eP16 Microcontroller Design in VHDL

Chapter 1 Introduction

1.1 History of the eP16

The eP16 microcontroller is a Minimal Instructioet &omputer (MISC), vis-a-vis
Complicated Instruction Set Computer (CISC) anduged Instruction Set Computer
(RISC). MISC was originally developed by Mr. Chudkore, and implemented in
his MuP21 chip. It happened that Chuck also ineetihe FORTH programming
language. For many years, Chuck sought to put FHDIRf0 silicon, because he
thought FORTH was not only a programming languagéalso an excellent
computer architecture.

In the early 1990s, a group of engineers from ti@V6 multiple design chip service
program came to Silicon Valley and started Orbingenductor Corp, offering
foundry services to the general public. Their E&rwas based on a 1.2 micron
CMOS processes on 5 inch wafers, with two metarnsay The smallest design they
accepted was on a 2.4mmx2.4mm silicon die. Chigekdd that he could design a
20 bit CPU in that small area. It was named MuP2tause it was a multiprocessor
chip, with a 20 bit CPU core, a DRAM memory copssm, and a video coprocessor,
and all registers and stacks in the CPU core weiat® wide, with an extra bit to
preserve the carry bit.

Because of the very limited silicon area, the MuRad a very small set of
instructions, but they were sufficient to suppocoanplete FORTH operating system
and very demanding applications with real time NTM&f&o output. The chip was
produced and verified, but productions in plasickages were not successful
because of poor yield.

When FPGA chips became available, | tried to im@eti-ORTH chips based on the
MuP21 instruction set. The first experiments wanean XS40 Kit from Xess Corp.
It had a Xilinx VC4005XL FPGA on board with a 32 KBRAM chip and an 8051
microcontroller. The purpose of this kit was tomdstrate how easy it was to use
an FPGA to replace all glue logic between RAM afii18 and to build a complete
working microcontroller system. | managed to s@ee 16-bit microcontroller, P16,
into the VC4000XL chip and eliminated the 8051.

Over the years, Xilinx added more logic gates aAiVilocks to their FPGAs, and |
was able to put a 32-bit microcontroller, P32, iatdCX1000E chip (which had 16
kB of RAM) to host a FORTH system. This design w&l® ported to FPGA chips
from Altera and Actel. P32 gradually evolved iet®32 with an eForth operating
system. eForth is a very simple FORTH operatirgjesy designed specifically for
embedded systems. However, FPGA chips were exetign, development
boards were more expensive, and development s@tiwals were very expensive.

| talked about eP32 implementations, but very fewgbe in the audience then had

these development tools to explore FPGA designs.

It was therefore very exciting to learn about tlatice XP2 Brevia Development Kit,
which was on sale for $49. Development software fsee to download. The Kit
has a LatticeXP2-5E-6TN144C FPGA chip, which hasugh logic cells to
implement eP32, and enough RAM memory to host Hueth system. Its RAM
memory is mirrored by flash memory on chip, and glownot need external memory
chips for programs and data. It is truly a sirgjl@ solution for microcontroller
system design.

Now, everybody can do his own designs on the Bri§itia It is time to update my
implementation on eP32 and its companion eFortadoh people the best way to
design their own CPUs and to explore their appboat

All FPGA manufacturers offer reference designs afratontrollers in their
development software tools, to demonstrate that BERGAs can be used to do
microcontroller system designs, or in a fanciemt&@ystem-On-a-Chip, SOC.
However, these microcontrollers are complicated, their performance is poor.

A microcontroller does not work without softwareSoftware reference designs from
these FPGA manufacturers are even poorer, as wleamestruggle with assemblers,
language compilers, and operating systems.

FORTH offers the best solution for FPGA users. TR is simple, the
programming language is simple, the operating systesimple, and the application
programming is simple. It is possible for an agerangineer or scientist to
understand and to traverse this complete CPU-Lajeg@gperating
System-Application spectrum in a few weeks. Whatgiired is an open mind, and
a willingness to explore different ways to do tling The very high cost barrier to
experiment with an FPGA is removed by the LatticB)@drevia Kit. The only
barrier left is you yourself.

By a request from Chipmast Technology, Inc. in ldsin Taiwan, the 32-bit design in
eP32 is reduced to a 16-bit design, and verifietherBrevia2 Kit recently produced
by Lattice Semicondutor Corp to replace the oldavia Kit. A newer Diamond 1.4
IDE (Integrated Design Environment) was also magsglable by Lattice to replace
its older ispLEVEL IDE.

This book contains two major sections, one on hardwlesign of the eP16 CPU core
and a few peripheral devices to form a completeoomntroller, and one on the
software design of eForth which runs on the ePHardware design is centered on a
set of VHDL files, describing modules in the eP¥6tem. Software design is
centered on a set of FORTH files, which is a metggter constructing a memory
image to initialize the RAM memory module in theléP Generally, | will show
source code on left hand pages, and commentatyeoopposing right hand pages.
My belief is that the source code is supreme. Mgtis more important than the
source code. If you understand the complete saade, you understand
everything.

Combining the hardware design of the eP16 and soétwesign of eForth, the result
is a FORTH microcontroller running on the LatticéXBrevia2 Development Kit.

You can interacy with this FORTH microcontrolleoiin a HyperTerminal console on
your PC, and write application programs. Masteting book, you have the
complete understanding of one microcontroller,nd aut. This understanding will
allow you to design your own microcontroller toxamlour own application
problems.

The eP16 has a 16-bit CPU core with two stackswa# intended to execute FORTH
instructions efficiently. The CPU design is simpellow implementation on
custom silicon chips as well as on FPGAs. The efgloys only 27 instructions,
and instructions are encoded in 5 bit fields. Tasign is scalable in word sizes
ranging from 16 bits up to 64 bits. A program wogsh contain many instructions in
5 bit fields. With this scalable architecture, RWCdesigner is freed from the heavy
yoke of program word size, which is the primary stoaint on a CPU design.

1.2 What isFORTH?

FORTH was invented by Chuck Moore in the 1960s piogramming language.
Chuck was not impressed by programming languagesating systems, and
computer hardware of his time. He sought the sestnd most efficient way to
control his computers. He used FORTH to prograeryeeomputer in his sight.
And then, he found that he could design better aderp, because FORTH is much
more than just a programming language; it is areleat computer architecture.

So what is FORTH?

Many books and many papers had been written ablORITH. However, FORTH is
still elusive because it has many features andacheristics which are difficult to
describe. Now that it has crossed the boundanyd®st hardware and software, it is
even more difficult to accurately put it into words

Let me try this way. Here it goes.

FORTH is a list processor.

FORTH has a set of commands, and an interprefanotzess lists of commands.
FORTH commands are records stored in a memorycatksl a dictionary.

Arecord of a FORTH command has three fields: lafield linking commands to
form a linear list, a name field containing the maofi this command as an ASCII
string, and a code field containing executable attedata to perform a specific
function for this command. It may have an optiguaiameter field, which contains
additional data needed by this command. The legld ind name field allow the
interpreter to look up a command in the dictionangd the code field provides
executable code to perform the function assignédisocommand.

A FORTH command has two representations: an eXtezpeesentation in the form of
an ASCIl name; and an internal representationenféhm of a token, which invokes
executable code stored in its code field. In MBORTH systems, the token is an
address. However, a token can take other formsrdipg on the implementation.

There are two types of FORTH commands: primitiveRFEl commands having
machine code in their code fields, and compound BOBommands having token
lists in their code fields.

A FORTH interpreter processes two types of lisgst tists and token lists. A text
list contains a sequence of FORTH command namparaed by white spaces and
terminated by a carriage return. A token list eomg a sequence of tokens, which
are internal representations of FORTH commands.

FORTH has two interpreters: a text interpreterolater interpreter) and a token
interpreter (or inner interpreter).

The text interpreter processes lists of FORTH comusaepresented in text, which
consists of names of FORTH commands separated g sgaces and terminated by
a carriage return. The number of commands in @igxs not limited. A list may
be just one line of text, or a huge text file.

The token interpreter processes lists of tokensanoed in compound commands.
It is also called the address interpreter, becausgany FORTH systems, tokens are
addresses pointing to code fields.

The text interpreter operates in two modes: ingtnpg mode and compiling mode.
In the interpreting mode, a list of command narsasterpreted; i.e., commands are
parsed and executed. In the compiling mode, alisommand names is compiled;
i.e., commands are parsed and corresponding ta@kercompiled into a token list.
This token list can be given a name to form a nemmound command, by adding a
new command record in the dictionary.

A FORTH compiler is a FORTH text interpreter operatin compiling mode. It
compiles new compound commands, converting a il FORTH commands into
an equivalent token list. It builds nested tokstslone on top of the other, until a
final solution is reached in the last token list.

This is the most powerful feature of FORTH, in thiati can compile new compound
commands, which replace lists of existing commahd#) primitive and compound.
The syntax of a new compound command is:

: <name> <list of existing commands> ;

A FORTH compiler converts a text list of existingnemands to a new token list.
Nested token lists are added until the final conmplocommand becomes the solution
to your problem. Lists are built and tested frdma bottom up. The solution space
can be explored wider and farther, and an optimsaddtion can be found more
quickly.

Following are some minor deviations in the synthtk@ORTH as a programming
language.

The text interpreter accepts numbers in a list. mhers are ASCII strings with valid

numeric digits and an optional leading '-' sign.heText interpreter pushes an integer
number onto the parameter stack. The FORTH comgilepiles an integer literal
into the token list. Later, when the token lisinterpreted, the integer literal token
pushes the integer back onto the parameter stack.

The text interpreter also accepts strings in a ligt string must follow a string
command, which consumes the string. A stringgsguence of ASCII characters
terminated by a terminating character specifiethieypreceding string command. A
string command may compile a string literal inte tbken list. In the token list, a
string literal consists of a string token followley the string in compiled form. The
string token uses the compiled string, and passesat to the next token after the
compiled string.

Lists are normally processed in consecutive sequenklowever, branches and loops
are allowed, using control structure commands. t@bstructure commands
compile control structures into token lists. Latenen a token list is interpreted,
branching and looping occur within these controlcures.

String commands and control structure commandsgehaaquential flow in lists.
They are elements in the FORTH language that re@aditional grammatical rules
in their usage. Otherwise, all lists are simplegdr, sequential lists.

The preceding exposition describes what FORTH tenms of a programming
language and operating system. A complete spatitit of a FORTH system must
include a document on all commands; i.e., name®mwimands, their effects on data
and return stacks, and their functional descrigtion

The fundamental reason that FORTH lists can belsintipear sequences of
commands is that FORTH uses two stacks: a retaok $b stored nested return
addresses, and a parameter stack to pass paraaretarg nested commands.
Parameters are passed implicitly on the param&tek,sand do not have to be
explicitly invoked. Therefore, FORTH commands &aninterpreted in a linear
sequence, and tokens can be stored in simpleylisea Language syntax is greatly
simplified, internal representation of tokens isajty simplified, and execution speed
is greatly increased.

A FORTH CPU thus needs two stacks, efficient me¢ansaverse nested token lists,
and an instruction set to support primitive comnsandThis is what eP16 is designed
to provide. It has two stacks. It has a smalirutdion set, which is sufficient to
code all primitive commands in eForth. It has veificient single cycle subroutine
call and return instructions. When we use the Quiiite Threading Model (where a
compound command consists of a list of subroutateirstructions) and represent
tokens by subroutine call instructions, the eP18& @Belf becomes the FORTH inner
interpreter. Nested token lists, as nested suin®lists, are traversed naturally with
very little overhead in memory space and in execusipeed.

The eP16 is the best list processor.

Chapter 2. Design of the eP16

2.1 Overview

The eP16 is a 16-bit microcontroller. Instructi@me encoded in 5-bit fields, and up
to 3 instructions are packed into a single 16-tbgpam word. 27 instructions are
defined to facilitate accessing words in memorymaltiplication and division of
integers, for real time interrupts and to supparious peripheral devices. A return
stack is included in the CPU for nested subroutades and returns. A parameter
stack is also included to pass parameters amongcsgbroutines. The simple
instruction set and dual stack design make it pdes$0 execute all instructions in a
single clock cycle from a single phase master cldtks design optimizes code
density, processing speed, silicon area and poaresumption, and is most suitable to
serve as microcontroller cores in System-On-a-@itggrated circuits.

As this design was developed and tested on a FPgA device, the LatticeXP2
from Lattice Semiconductor Corp, a complete micrdcaler system, including CPU,
memory and a number of 1/O devices, is built omgle FPGA chip.

In this design, the CPU latches all data into appate registers and stacks on the
rising edge of a single phase master clock. Swgymehronous design ensures that
all instructions are executed quickly and reliably single clock cycle. When the
master clock is held steady, the microcontrolléaires all data in registers, stacks and
memory, consuming very little power. It is thusgible to further reduce its power
consumption by reducing the clock rate, or stoppinggclock completely.

The eP16 has this set of registers:

Name | Register Function

I Instruction latch Holding up to 3 instructionshie executed

P Program counter Pointing to next program wonsh@mory

R Top of return stack| Holding return address oploounts

S Second item of Supplying optional second argument to ALU
parameter stack

T Top of parameter | Accumulator for ALU
stack

A Address register Supplying address for memorg eead write

The eP16 has two stacks to support fast subroaditieg and returning, and to
optimize execution speed:

Name Stack Function
s _stack | Parameter stack Passing arguments amaed sebroutines
r_stack | Return stack Saving return addresses tdahesbroutines

The | and P registers are 16 bits wide to addréds words of memory. T,R, S, A
and stacks are all 17 bits wide. The most siganfidit in T, T(16) is a carry
produced by a 16-bit adder. This carry bit is preed when T is transferred to other

registers and to stacks. Preservation of carrgreitly simplifies extended
precision arithmetic operations in the ALU, andwa# subroutines and interrupts to
be serviced without having to save a carry bit @sdore it on return.

Registers and stacks and their relationship aredbesvn in Figure 1:

>
Memoary
A
internupt write | read addr data rst ol
“ [
S A N R
] i »-
W |3 E
: F X s ! Decoder —=
_______ el -
Program Execution Uit
: : L 4
: FESTACK t-f—= R H T = 5 el—f SETACK
. FemmSekUm i l l
aLU Data Processing Unit

Figurel. eP16 Architecture

The T register is the center of the eP16. It Sepgine argument to the ALU, which
takes an optional second argument from the S e¥gasid routes results back to the T
register. Contents in T can be moved to the Astegipushed on parameter stack S,
or pushed on return stack R.

The T register connects parameter stack and retaok as a giant shift register.
Data can be shifted towards the return stack by@HrPinstruction, and shifted
towards the parameter stack by a POP instruction.

Register A holds a memory address, which is usedad data from memory into the

T register, or write data from the T register tonmoey. The address in A can be auto
incremented, so that the eP16 can convenientlysaataa arrays in memory.

P is a program counter and holds the address afakieprogram word to be fetched
from memory. After a program word is fetched, RBuso incremented and ready to
read the next word. When a CALL instruction is@xed, the address in P is
pushed onto the return stack. When a RET retwtnuation is executed, the
previously saved address on the return stack ipgmbpack into P. The execution
sequence interrupted by CALL can then be resumed.

The depth of both stacks is 32 levels, which alleets deep nesting of subroutine
calls. Stacks are implemented as circular buffe@verflow and underflow
overwrite data previously pushed onto the stacle@@ls before. No effort is made
in detecting and handling overflow and underflomditions, because stack
overflow/underflow is not really a very seriousarcondition, although it is dreaded
by programmers using conventional languages. Cordmmay consume stack
items, and may push data onto a stack. It is isiptesfor an operating system to
determine whether the stack effects of a commaadiae to errors or due to the
programmer’s intention. Therefore, it is best tefthe programmer to make sure
that stacks behave correctly.

The 5-bit code field supports up to 32 instruction$hree 5-bit instructions are
packed into one 16-bit word, and are executed cunisely after a program word is
fetched from memory. It can be viewed as a 3uasion cache, which provides an
optimal balance between a slow RAM memory ande@&3J. For example, if
16-bit words can be fetched from RAM at a rate @MHz, the 5 instructions can be
executed at a rate of 60 MHz.

The design and functions of the eP16 are bestmesén functional blocks. The
eP16 can be divided into the following 4 functiohklcks, in four quadrants in
Figure 1:

Program Execution Unit in Quadrant 1

Address Unit in Quadrant 2

Return Stack Unit in Quadrant3

Data Processing Unit in Quadrant 4

These blocks will be discussed in the following ¢mg
2.2 Program Execution Unit

The synchronous Program Execution Unit, as showsgare 2, is a finite state
machine, controlling execution of instructionshe €P16. It has a COUNTER
register driven by external “reset” and “clock”sads. When “reset” is asserted,
COUNTER is cleared to 0, which is output to “slot"When “reset” is released,
external clock signal “clock” drives COUNTER, whichincremented on the rising
edge of “clock”. “slot” is incremented from 0 to &1d back to 0. When “slot"=0,
eP16 reads the next program word from the Data &w)atches it into the | register
on the rising edge of “clock”.

As “slot” is incremented between 1 and 3, it seddam the | register one 5-bit

instruction “code” through instruction multiplexélUX. “code” drives

DECODER, which produces all control signals to timeP16. These control
signals select appropriate data through multipkexand present them to registers and
stacks. On the rising edge of “clock”, selectethdae latched into appropriate
registers and stacks, and thus starts anotheuatistin cycle.

When executing transfer instructions like CALL, BRBZ, BC, NEXT, RET and
NOP, the “slot0” signal is set. It clears COUNTERI forces next cycle back to
slotO, fetching a new program word from Data Bus.

The rising edge of the “clock” signal thus paces&R16 to execute instructions read
from external memory through the Data Bus. TheteBh synchronous CPU.
Registers and stacks are changed only on the rsigg of “clock”. Otherwise, all
registers and stacks are static, and hold thetects indefinitely.

1514.1[};.\

Data Bus I 1055 é Lde.- DECODER
Tid 0
cloels
e
raseat COUNTEE slot
slot0
—

Figure2. Program Execution Unit
2.3 Address Unit

The Address Unit is shown in Figure 3. It suppheks-bit address on the Address
Bus to external devices. When executing the neognam word, the PMUX
multiplexer routes the address stored in the BBtegio the Address Bus. When
accessing data in memory, the AMUX multiplexer esuthe address stored in the A
register to the Address Bus. This symmetricalrayeanent of P and A registers and
address multiplexers AMUX/PMUX/AddressMUX allowd alemory operations to
be completed in a single machine cycle. Thisessiimplest memory management
system of a von Neumann machine. It is entirelyasessary to use very
complicated memory modes to access memory, agi@tRC microcontroller
designs.

Depending on the current instruction being exeguPddUX selects one of 4 inputs to
the P register: the next program address (P+&ygettaddress in the address field of
the current program word in the | register, theme@ddress in the R register, and an
interrupt vector. The selected new address isdatento the P register on the rising
edge of the master clock.

Depending on the current instruction being execuadlUX selects one of 5 inputs
to the Aregister: the T register, the next datadraaldress (A+1), the left-shifted
(T+S):A register pair in a divide step instructidime right-shifted T:A register pair in
multiply step instruction, and the (T+S):S regigiair in a multiply step instruction.
Selected new data is latched into the A registaherrising edge of the master clock.

LA

A+1 |

((T+5) A3/2)
(T.A02)
(T+E) A%)

Address Bus
—..

P+1 :
(B.)
r

Inten‘uEt p

\ WM SSAIppY /

=7\ =7
.

Figure3. AddressUnit

2.4 Data Processing Unit

The Data Processing Unit is show in Figure 4. otitains a parameter stack and an
ALU. The top item of parameter stack is implemdrds a T register, which is like
an accumulator in conventional CPU designs. Thers®element of parameter
stack is designated as the S register. The ALEstdkand S registers as its input
and generates a set of logic and arithmetic signaI$UX selects one of these
results and routes it to the T register. A spectiachine instruction will select the
result it needs and latch it into the T registettmrising edge of the master clock.
This strategy—Compute Everything and Select the @neNeed—allows all ALU
operations to be complete in a single machine cycle

10

All ALU instructions select the results they wamtdugh TMUX. You can
recognize these instructions by the signal namé&®sir of TMUX.

The PUSH instruction selects the S register to tbadr register. The POP
instruction selects the R register to load T. TB& instruction selects Ato load T.
Memory read instructions select the Data Bus td [ba

{T

TZOR 3 |

T &ND 8
T — ——P
T+3

————
(T8

T/2)

. T

T+ A3*2 |

5 — (T.A)*2 | % i T = = Drata Stack
T*3

—P.

T EF&
—h

nis

Figure4. Data Processing Unit
25 Return Sack Unit

The Return Stack Unit is shown in Figure 5. lba# subroutine CALL, RET and
NEXT instructions to be executed in a single clog&le. It contains a return stack,
whose top item is implemented as a R register. ARlGnstruction pushes the
address of the next program word in the P reg@téw the return stack through
RMUX. ARET instruction pops the return stack dadhes the return address in R
back into the P register.

Subroutine call and return instructions generalg/the most complicated machine
instructions in a CISC microcontroller design. ¥lad need many clock cycles to
complete, because many tasks are required in gestich un-nesting a subroutine call.
Here in the eP16, subroutine call and return atke texluced to a single clock cycle.
As all high level programming languages rely hgagih subroutine calls and returns,
reducing overhead in subroutine calls and retuiiisignificantly improve
performance of programs produced by these langcageilers.

11

The eP16 is also optimized to process loops. [@Qudaping, the R register is used
to hold a loop count. The NEXT instruction lookgtas count. If R is not zero,
NEXT decrements it and branches to the beginningefoop. If R is zero, NEXT
terminates the loop. To decrement R, R-1 is seteloy RMUX to latch back into R
on the rising edge of the master clock.

L »

.
)
-

E-1 e E e Eeturn Staclk

—

Eeturn Stack)

Figure5. Return Sack Unit
2.6 Timing of Instruction Execution

This simple yet efficient design of the eP16 all@Msnstructions to be executed in a
single clock cycle. Each clock cycle is callecskot”. However, program words
must be read into the CPU before instructions @mtltan be executed. In the
current implementation, | allocate an extra cyoledad in a program word. This
extra cycle is called “slot0”. After a program wlas read in “slot0”, as many slots
are used to execute as many machine instructioeiprogram word as necessary.
For short instructions, 1 to 3 slots are used &xrate 1 to 3 instructions. For long
instructions, only “slotl” is used to execute ag@long instruction in a program
word. The following diagram shows timing in exengtshort instructions and long
instructions.

12

Ezxecution Cycles of Short Instructions

slotd slotl slot2 slot3 slotd slotl slot2 slot3
Fead Execu Execu Execu Eead Execu Ezecu Execu

Execute 5 short instractions Execute 5 short instractions

Execution Cycles of Long Instructions

slot0 slotl slotl slot3 slatl zlotl slotl slotl slot2 slotd
Fead Execu Execu Execu BRead Execu Eead FExecu Fxecu Faxecu

Fxecute 5 short instructions Fxzecute | long | Execute 5 short instructions

itistructions

Figure6. Instruction Execution Timing

NOP and RET instructions can be in any of the &sfoa program word. When
these two instructions are executed, “slot0” wdlthe next slot, and the next program
word will be fetched from memory and then executeBxtra NOP instructions filled
in a program word by a compiler do not waste eglinak cycles.

Under most circumstances, fetching the next programnad can be overlapped with
other machine instructions, and “slot0” can be édito save execution time.
However, an explicit “slot0” to fetch the next pragh word allows servicing real
time interrupts with very little extra hardware ovead. In “slot0”, interrupt pins
are examined. If not all interrupt pins are O andrrupts are enabled, the non-zero
5-bit pattern presented by the interrupt pins aken as the address of a subroutine
call, and execution is transferred to one of tlrations between 1 and 31. In
memory, Location O contains the reset vector, andtlons 1-31 contain 31 interrupt
vectors.

Interrupt is a big issue in microcontroller design#f you are familiar with early
microcontrollers, you might remember that the 8088rrupt controller in the 8080
microcontroller family was as complicated as th8@fself. Here | provide a very
simple solution. Itis not a “be all, do all” stilen for interrupts, but it gives you a
solid foundation to start from.

In eP16, three 5 bit instructions take up only &8.b The most significant bit 1(15)

is not used by instructions. This bit is usedtplement the CALL instructions. If
1(15)=0, it is a CALL instruction, and the resttbg instruction is a 15 bit address of a
subroutine. A CALL instruction can thus call ampsoutine in the lower 32 K

words of the program memory. The upper 32 K warfdsiemory can be allocated

to store data or peripheral devices.

13

Chapter 3 €eP16 Instructions

3.1 Instruction Classes

The eP16 instruction set can be best explainedguia register and data flow
diagram as shown in Figure 1. The T register éscnter of the ALU, which takes
data from the T and S registers and routes thdtsesack to the T register. The
contents of T can be moved to the A register, pdigiopped to the parameter stack S,
pushed/popped to the return stack S, and readwitist external memory.

The T register connects the parameter stack andetioen stack as a large shift
register. Data can be shifted towards the rettacksby the PUSH instruction, and
shifted towards the parameter stack by the PORuictgin.

Register A holds a memory address, which is usedad data from memory into the
T register, or write the data in T register to exé¢ memory. The address in A can
be auto incremented, so that eP16 can conveniactlyss data arrays in memory.

P is the program counter and it holds the addrefiseonext instruction to be fetched

from the memory. After an instruction is fetch@ds auto incremented and ready to
read the next instruction. When a CALL instructisrexecuted, the address in P is
pushed on the return stack. When a return (RES$)runtions is executed, the

previously saved address in R is popped back intoTRe execution seqguence
interrupted by CALL is now resumed.

eP16 is a microcontroller with 16-bit instructiong=ach instruction word contains up
to three 5-bit machine codes. There are 32 p@ssitstructions in a 5-bit field.
Only 27 instructions are defined in the current@&Rthplementation.

There are 3 types of instructions. The instrucfiefds in a program word can be
shown as follows:

Bit Fields 15 14-10 9-5 4-0

CALL 0 addr addr addr

Long Instr. 1 Jump instr addr addr
Short Inst. 1 Instruction 1 Instruction 2 Instrocti3

A CALL instruction has bit 15 cleared and the refsbits 14-0 are used to store a 15
bit address of a subroutine. All other instructi@xcept CALL have bit 15 set to 1.

Long instructions must appear in Slotl (bits 14-G0a program word. The last 10
bits 9-0 contain an address inside the current bkdwage. They are used to jump
to addresses within the current page. To reaatr giiiges of memory, you must call
a subroutine call or push a 16-bit address onghem stack and execute a subroutine
return instruction.

Short instructions are 5-bit in width, aHf to three short instructions can be packed
into a 16-bit program word. They can be executedspeed much faster than the

14

memory read speed.

Functionally, there are 5 classes of instructionsR 16:

Instruction Class

Instructions

Transfer Instructions

BC, BRA, BZ, CALL, NEXT, RET

Memory Access Instruction

sLDI, LD, LDP, ST, STP

ALU Instructions

ADD, AND, COM, DIV, MUL, RR8, SHLSHR,
XOR

Register/Stack Instructions

DROP, DUP, NOP, OVEBPPPUSH, SWAP, STA
LDA

Miscellaneous Instructions

El

The transfer instructions have the following forms:

CALL 0 aaaaaaaaaaaaaaa

BRA 1 00001 aaaaaaaaaa
BZ 1 00010 aaaaaaaaaa
BC 1 00011 aaaaaaaaaa
NEXT 1 00101 aaaaaaaaaa

All other instructions are short instructions amel summarized in the follwoing table.

The complete instruction set is shown in AppendioRyour reference.

15

Instruction |Code Function

BRA 00000 Branch to address contained in addrekl.

RET 00001 Return from a subroutine to callinggpam. Pop returr
address from return stack and deposit it in P.

BZ 00010 If T=0, branch to address in address field; elsginae.

BC 00011 If Carry is 1, branch to address idress field; else
continue.

CALL 00100 Push address in P on R stack, aaddbrto address in
address field.

NEXT 00101 If R is not O, branch to addresaddress field, and
decrement R by 1; else pop R stack and continue.

El 00110 Enable interrupts.

LDP 01001 Push T on S stack; read data wondt@oito by Ainto T.
Increment Aby 1.

LDI 01010 Push T on S stack; read data wordtpditoby P into T
Increment P by 1.

LD 01011 Push T on S stack; read data wordtedito by Ainto T.

STP 01101 Store T into word pointed to by Acrement A by 1.
Pop S stack to T.

RR8 01110 Rotate T right by 8 bits.

ST 01111 Store T into word pointed to by A. Fogtack to T.

COM 10000 Complement T (1's complement).

SHL 10001 Shift T left by 1 bit.

SHR 10010 Shift T right by 1 bit.

MUL 10011 Multiplication step. If A(0)=1, addt8 T. Shift T:A
pair right by 1 bit.

XOR 10100 Pop S stack and XOR itto T.

AND 10101 Pop S stack and AND itto T.

DIV 10100 Division step. If T+S produces a gashift (T+S):A
pair left by 1 bit and set A(0); else shift T:Atiély 1 bit.

ADD 10111 Pop S stack and add Sto T.

POP 11000 Push T onto S stack. Pop R stackto T

LDA 11001 Push T onto S stack. Copy Ato T.

DUP 11010 Push T onto S stack. T remains urggtan

OVER 11011 Push T onto S stack. Copy origioaltents of S to T.

PUSH 11100 Push T onto R stack. Pop S statk to

ASTA 11101 Copy Tto A. Pop S stack to T.

NOP 11110 No operation.

DROP 11111 Pop S stack to T.

16

Transfer instruction CALL has a 15-bit addressfielnd it can call subroutines in the
lower 32 K word program memory. The upper 32 Kavaremory space can be
used to store data or used as peripheral devitsteesy

Transfer instructions BC, BRA, BZ, and NEXT areddnstructions with a 10-bit
address field. These instructions allow a progratranch to a new location inside
the current page of memory. A page is 1 Kwordsize. The current page is
where the current program word resides.

All other instructions are short 5-bit instructiondJp to 3 short instructions can be
packed in to a single 16-bit program word. Howegwdren the RET instruction is
executed, execution is transferred to the addies=dson the return stack, and
subsequent short instructions in the same progrard are ignored. NOP behaves
similarly so that extra NOP instructions filledbg the compiler are ignored.

In many instances, a program word cannot be fikgd useful short instructions,
because the next instruction is a long instructamg the rest of the current program
word must be filled with NOP instructions. Instezdvasting time to execute these
NOP instructions, the instruction sequencer in eRillGabandon the current program
word, immediately fetch the next program word axelceite it when it encounters the
first NOP instruction. However, the user doeshete to worry about this, because
the compiler automatically packs as many shortuiesibns into a program word as
possible. Only when the compiler must start a lwagsfer instruction does it pad
the current program word with NOPs.

3.2 Transfer Instructions

Instruction | Code Function

CALL Oaaaaaaaaaaaaaaa Push the address in BtackRand branch to
address in address field; else continue.

BC 00011 If Carry is 1, branch to address idrasss field;
else continue.

BRA 00000 Branch to address in address field.

BZ 00010 If T=0, branch to address in addredd;felse
continue.

NEXT 00101 If R is not 0, branch to addresaddress field,
and decrement R by 1; else pop R stack and
continue.

RET 00001 Return from a subroutine to callinggoam. Pop
return address from return stack and depositht |n

CALL and RET are used to do subroutine nestinguamtesting. The eForth
software system uses a Subroutine Threading Modl.compound commands are
defined as lists of subroutine CALL instructions.

BRA is an unconditional branch instruction. Itihches to a location in the current
memory page of 1 Kwords. BZis the branch on mestruction. It branches to a
new location when the lower 16 bits in T are all @therwise it is a NOP. It is used
extensively in FORTH to construct IF-ELSE-THEN behrstructures,

17

BEGIN-UNTIL and BEGIN-WHILE-REPEAT loop structures.

BC is the branch on carry instruction.

the T register is set.
compound commands, but is used to implement mamytiye commands where
extended precision integer arithmetic operatiogsire a carry bit.

The NEXT instruction reduces a looping operatioa gingle cycle instruction.
eForth, one enters a FOR-NEXT loop structure byjmgsa loop count into the R

register.

By adding auto-decrement and zero-dé&ections to the R register, it is

possible to implement NEXT in hardware as a siggtde machine instruction, and
thus optimize looping in eForth.

3.3 Memory Access | nstructions

Instruction | Code Function

LDI 01010 Push T on S stack, read data wordtpdiby P into T.
Increment P by 4.

LD 01011 Push T on S stack, read data wordt@diby Ainto T.

LDP 01001 Push T on S stack, read data wonatg@aiby A into T.
Increment Aby 1.

ST 01111 Store T into memory pointed by A. Bogtack to T.

STP 01101 Store T into memory pointed by Aréneent A by 1.
Pop S stack to T.

The P-series microcontroller addresses memory musvof any reasonable width.

The eP16 instruction set assumes 16-bit addresskestabit program and data words.

It does not address bytes in memory.

The LDI instruction reads the next word in prognam@mory and pushes it on the
parameter stack. The word address is in the Btexgi The P register is

auto-incremented to skip the data word.
programs and read into the CPU at run time.

LDI alldiesal integers to be stored in
Litetagers are very important

constituents of programs, and LDI instructions imjte their storage and usage.

The LD instruction loads a 16-bit word from memd&mythe T register.

16-bit word that is in the T register to a worddtion in memory. The memory

It brancteea new location if the carry bit in
Otherwise it is a NOP. sThstruction is not used in

ST stores the

address is in the A register.

LDP and STP are like LD and ST, respectively, extegt after memory access, the A
register is auto-incremented. Auto-incrementirgjAlregister allows consecutive
memory locations to be read or written with miniraaérhead.

3.4 ALU Instructions

Instruction | Code Function

ADD 10111 Pop S stack and add it to T.

AND 10101 Pop S stack and AND itto T.
COM 10000 Complement T (1's complement).

18

DIV 10100 Division step. If T+S produces a gashift the
(T+S):A pair left by 1 bit and set A(0); else shifA
left by 1 bit.

MUL 10011 Multiplication step. If A(0)=1, addt8 T. Shift the T:A
pair right by 1 bit.

RR8 01110 Rotate T right by 8 bits.

SHL 10001 Shift T left by 1 bit.

SHR 10010 Shift T right by 1 bit.

XOR 10100 Pop S stack and XOR itto T.

In the original MuP21 design, only COM, SHL, SHR\B, XOR, and ADD
instructions were defined. Other logic and arithmeperations were implemented
in terms of these basic instructions. In the eR18l., DIV and RR8 are added to
speed up arithmetic computation.

COM, SHL, SHR, and RR8 are unary instructions djegaon the T register alone.
COM does one’s complement on T register. SHL sliife T register 1 bit to the left.
SHR shifts T register 1 bit to the right.

RR8 rotates the contents of the T register toitjle by 8 bits. This instruction is
very useful in a word-addressing CPU like the ePll6allows individual bytes in
memory to be accessed with minimal effort.

ADD, AND and XOR are binary operations on the T &wkgisters. They pop the
parameter stack and discard the data in the Steegis

ADD adds StoT. ANDandsStoT. XOR exclusive 8to T.

OR is not implemented as a machine instruction.s ithplemented in software
using the De Morgan’s theorem. In many cases, X@&Rbe used to perform OR
functions instead.

MUL and DIV are ternary operators, involving theSTand A registers. MUL is a
muliplication step instruction and DIV is a divisigtep instruction.

Multiplication and division are important arithmebperations frequently used in
computation-intensive applications. It is possibolénplement a full
multiplier-adder for DSP applications in FPGA. Hamwer, a fast multiplier-adder
requires a large number of gates and significantdgeases power consumption. In
the eP16, a multiplication step instruction, MUbgdaa division step instruction, DIV,
are implemented. They make use of the 16-bit addeérshifter already existing in
the ALU. \Very little hardware is added, and vatild additional power is needed.

In the MUL instruction, the T and A registers aomsidered a 33-bit right-shift
register. Initially, a partial sum is loaded ireth register, a multiplier in the A
register, and a multiplicand in the S register. th# least significant bitin Ais 1, Sis
added to T, and the resulting T-A pair is shifteght by 1 bit. If the least significant
bitin Ais O, T is not changed, and the T-A paishifted right by 1 bit. This MUL
instruction is repeated 16 times, after which th®ister pair will contain a
double-word product of A*S +T. The MUL instructiemshown Figure 7.

19

X0=1, right shift (T+S)4
X0=0, right shift T:4

— T or (T+3) —= A Al
Tlé
Catry
R

Figure7. Multiplication Step

In the DIV instruction, the T and A registers aomsidered a 33-bit left-shift register.
A double integer dividend is in the T-A registeirpand a negated divisor is in the S
register. Inthe ALU, the sum of S and T is alwegmputed by an adder. If the
carry bit in the adder is 1, S is added to T, d&edresulting T-A pair is shifted left by 1
bit. If the carry bit in the adder is O, T is mbtanged, and the T-A register pair is
shifted left by 1 bit. In either case, the carityi® shifted into the least significant bit
in the Aregister. After repeating the DIV insttion 16 times, the A register
contains quotient, and the T register containsfZke@remainder of the division.

The DIV instruction is shown in Figure 8.

Carry=1 left shift (T+304
Carry=0, left shift T:A

e B T or (T+5) — A
T16
Carry
5

Figure8. Division Step

3.5 Register/Sack Instructions

Instruction | Code Function

DUP 11010 Push T on the S stack. T remainsangsd.

DROP 11111 Pop S stack to T.

NOP 11110 No operation.

OVER 11011 Push T onto S stack. Copy origioaltents of S to T.
POP 11000 Push T onto S stack. Pop R stackto T

PUSH 11100 Push T onto R stack. Pop S statk to

STA 11101 Copy Tto A. Pop S stack to T.

LDA 11001 Push T onto S stack. Copy Ato T.

DUP, DROP, SWAP and OVER are the 4 classic staekations.

20

DUP pushes the T register on the parameter stadROP pops the parameter stack
back into T. SWAP exchanges T and S, the top teiments on the conceptual
parameter stack. OVER duplicates S, and pushe®if.

Both SWAP and OVER copy the second item-adh®stack to the top of the stack.
The difference is that OVER preserves the secam ih S while SWAP destroys it.
We chose to implement OVER in hardware, and leAWaRSto software.

POP pops the top item on the return stack and gusbato the parameter stack.
PUSH pops T from the parameter stack and pusloegatthe return stack. These
operations are best viewed by considering retwck&R/T/S/parameter stack as a
giant shift register array, with only the threeister R/T/S window at center, exposed
to the ALU. The POP instruction shifts this siégister array to the right, and the
PUSH instruction shifts it to the left.

The STA and LDA instructions are used to managétregister. The Aregister is
used to read data from memory and write data toongm It usually holds a
memory address. However, it can be used as abgratl register to save and
restore the T register. STA pops the parametek stad copies Tto A. LDA
pushes T onto the parameter stack and copies titernte in Ato T.

3.6 Miscdlaneous|nstructions

Instruction | Code Function

El 00110 Enable interrupts.

The eP16 provides the simplest mechanism to supgalrtime interrupts. Five
input pins on the eP16 package are allocated &itirae interrupts. If interrupts are
enabled, and at least one of 5 interrupt pins izam, a subroutine call to one of 31
locations in memory address 1 to 31 is forced @GRU in the slotO clock cycle.
The address is selected by reading the signalseoh interrupt pins, and
zero-extending it to form an address pointing toeamory location between 1 and 31.
By filling proper branch instructions in memory &ions 1 to 31 as an interrupt
vector table, this microcontroller system can resptm external interrupt requests in
real time.

This simple scheme allows 5 external devices &rinpt the CPU directly. If
additional decoding logic were added, it could sernterrupts from 31 external
devices. With only 5 interrupt devices, the ePa6 espond to simultaneous
interrupts from multiple devices, by constructihg interrupt vector table properly,
and inserting the El instruction properly in intgst service routines. It is assumed
that after booting, the microcontroller system agunfes itself so that page 0 of
memory is in RAM memory, and software can changertkerrupt table dynamically.

When servicing an interrupt, further interrupts disabled and an interrupt
acknowledge signal is asserted. Interrupting aesvghould remove their interrupt
requests when seeing interrupt acknowledge. Adterrupt service is completed,
the interrupt service routine, or the main programst execute an EIl instruction to
enable future interrupts. It is a trivial matteraddd a complement instruction DI to
disable interrupts, but it seems to be superflaube moment.

21

Chapter 4. Implementing eP16 on the Brevia2 Kit

4.1 TheBrevia2 Development Kit

| had opportunities to use FPGAs from Xilinx, Aleand Actel before. |
implemented various versions of the eP32 on aheim. | was not particularly
impressed with these companies and their FPGA ptedu FPGA chips were
generally expensive, development boards were marensive, and development
software systems were even more expensive, bultyianally slow.

When Lattice Semiconductor Corp announced its Br®avelopment Kit at $49, |
got excited. A friend Masa Kasahara loaned méihis | bought 2 more when
Lattice had a special sale for $29. | downloadedrée development software
iISpLEVEL and started porting the eP32 to the LaXie2-5E-6TN144C FPGA chip.
Working intensely for three weeks, | succeededkeitigg the eP32 to work. The
XP2-5E has enough logic cells to implement the eBBP core, a UART, and a
general purpose I/O port. It also has enough RA&Mary to host the eForth
operating system. The nicest thing is that its Rimory is mirrored by the
on-chip flash memory, and the entire eP32 systetongained in a single XP2-5E
chip. All other FPGAs required external ROM memtryost a complete
microcontroller system. The XP2 is my dreamed 0.

My only complaint is that its software developmsystem, ispLEVEL, is too bulky.

It required me to free up 5 GB of disk space tdalh#, with accompanying
Synplicity synthesis tools and Aldec ActiveHDL silation tools. One other thing is
that the Brevia Kit requires a COM port and a gdatgrinter port on my PC for
communication and for a JTAG interface. It is adiig deal for me, because | have
this old desktop computer, which has these ports.

Recently Lattice replaced the Brevia Kit with Bra®iKit, and upgraded ispLEVEL to
Diamond IDE. Two cables connecting to the COM pndter ports were replaced
by a single USB cable.. The eP16r implementasaested and verified on the
Brevia2 Kit, with Diamond 1.4 IDE system. | haduble installing the USB drivers
on on of my PC, but that's another story.

Here is a laundry list of components included i Brevia2 Kit:
LatticeXP2 FPGA: LFXP2-5E-6TN144C

2 Mbit SPI Flash Memory

1 Mbit SRAM

A single USB cable for programming and communicatio
2x20 and 2x5 Expansion Headers

Push buttons for General Purpose I/O and Reset

4-bit DIP Switch for user-defined inputs

8 Status LEDs for user-defined outputs

Since the XP2-5E has 166K bits of embedded blockMRIAdo not need the external
SPI flash memory and SRAM. The USB interface dbtumplemented two
devices: an UART port for communication, and a fpelrport to program the FPGA.
The LEDs, push buttons, and switches are very ugafdemonstrations. This kit

22

has everything | need to demonstrate my eP16 noatoaller design and the eForth
operating system.

Here | will show you steps to get the eP16 impletegion my Brevia2 Kit and to get
the eForth system to run, talking to HyperTermorala PC.

You have to download the Diamond IDE suite from wiatticsemi.com to
implement the eP16. You need the Diamond SysteM/indows, the Synplify
Synthesis Module, and the Aldec Active-HDL LattiMeb Edition Module. They
take up a huge amount of disk space. Then you toeapply for a license from
Lattice. Lattice also provides many examples far jo evaluate its FPGA. You
may want to look at their Demo Application, whiabntains a LatticeMico8
Reference Design. LatticeMico8 is an 8-bit micracoller. Only after you
studied LatticeMico8 will you appreciate that tH&lé, a 16-bit microcontroller, can
be simpler than an 8-bit microcontroller with a eentional architecture.

FPGA Design with the Diamond Tutorial is a veryfuséutorial to get you started
with Diamond and its tool chain. Go through itshe step and you will learn how
to use this FPGA development software packageound that it was very helpful to
me in implementing eP32 and eP16.

4.2 Synthesizethe eP16

You have to install Diamond first. When Diamondigsand running, open a new
project. Name this project eP16, if you do notéhabetter name. A New Project
Wizard will help you set up this project. You haweselect LatticeXP2-5E as your
target device and VHDL as your programming languag¢ow, import the following
files into the above project.

File Module

eP16_ chip.vhd Top level microcontroller system
eP16.vhd eP16 CPU module
ram_memory.vhd RAM memory module

uart.vhd Serial UART module

gpio.vhd General purpose parallel IO module

In the Diamond Project Source panel, select thesHilst tab. You will see that all
the above files are imported as shown in Figure 9.

23

A N ST

Eile Edit View Project Design
A-@-HF B[e
CEREE% DT

File List

Process

Tools

Window Help

mA]Qq

4 @ epl5
i LFXP2-5E-5TN144C
4 | Strategies
[2@ Area
L?’ 1O Assistant
Quick
Timing
Strategyl
4 IE—E epl5
4 | InputFiles
¥ epl6ahd [work]
Wi epl6_chip.vhd [work]
& gpiol6.wvhd [work]
ram_memory.vhd [work]
M uartlvhd [work]
| _Synthesis Canstraint Files

[eplsipf

. Debug Files

- Script Files
simul/simul.spf

Design Summary
4 [0 Project
Project Summary
4 7 Process Reports
b ¥ Synplify Pro
& Map
g Place & Route
signal/Pad
JEDEC
4 [T Analysis Reports
Map Trace
Place & Route T...
1/0 Timing Anal...
4 7 Tool Reports
[} VO 550 Analysis
[} Generate Hierar...
s [} Run BKM Check
[P10 DRC

m

Output

. Analysis Files =
Iiruoess | File List

=
S

Module Name: epls Synthesis: SynplifyPro
Implementation epls Strategy Name: Strategyl
Hame:
Last Process: State:
Target Device: LFXP2-5E- Device Family: LatticeXP2
STN144C
Device Type: LFXP2-5E Package Type: TQFP144
Performance grade: 5 Operating COM
conditions:
Logic preference epl5.1pf
file:
Physical Preference |epl5/epl5_epl5.prf
file:
Product Version: 1.4.27 TOpdated: 2012/03/03
00:41:18
Implementation C:/flacc/diamond/eplSr/epls
Location:

m

g x

Starting: "prj_project open "C:/1

scc/diamond/epl5r/epls.ldE""

Tl Console | Output ‘ Error | Warning

Ready

Mem Usage: 16,512 K

Figure9. Diamond IDE, FileList

24

Click the Process tab in the Project panel, andwidlisee the modules arranged in a
hierarchy as shown in Figure 10.

o e 4 Y aowmmes = W T
m— o
I File Edit View Project Design Process Tools Window Help
a-g-rddBlruyin/eERQAQqa BE @0/ EEED
YPEGESESCEHEGAAEUSRaY BHEHEEE @
Process & X | iF StartPage | | [F= Reports [£] | =l %
| 4 % Synthesize Design ‘Epl& & x
%L Synplify Pra ‘ﬁ 3
%L Translate Design 200 ATY
' 4 % Map Design 4 I Project epl5 project summary
Ll
[¥] %L Map Trace e & Project Summary Module Name: epls Synthesia: SynplifyPro
[Verilog Simulation File 4 [T Process Reports
4 - lementation epls Strategy Name: Strategyl
| . VHDL Simulation File & synplify Pra s L 22 ¥
4 % Place & Route Design & Map
[#] %L Place & Route Trace ¥ Place & Route SAEE; Brocem States: E|
'-{ L vo Timing Analysis ﬁ Signal/Pad Target Dewice: LFXP2-5E- Device Family: LatticeXF2
4 2 Export Files ! # JEDEC 5TN144C
¥ & IBIS Model il *’g‘”a‘)'s's Reparts Device Type: LFXP2-5E Package Type: TQFE144
"2 i i i ¥ Map Trace
= : Verilig .Slmula.t\on _Flle @ Bl & Route T, Performance grade: 5 Operating COM
[¥] & VHDL Simulation File = ACE DRI, endtiteans
@] % JEDEC File # 170 Timing Anal...
a 77 Tool Reports Logic preference epl5.1pf
[10 550 Analysis | | 1182
i m Generate Hierar.. Phyaical Preference |epl5/epl5_eplS.pri
[™] Run BKM Check file:
[Po DRC Product Version: 1.4.87 Updated: 2012/03/03
00:41:1&
Implementation C:/lscc/diamond/eplSr/epls
Process |_ﬁ|§LlSt_| L | |Location: 5
Output 8 x
Starting: "prj_project open "C:/lscc/diamond/epl5r/epl5.1ldI™"
| TdConsole | ouput | Error | warning |
I Ready Mem Usage: 17,964 K

Figure10. Diamond IDE, Process View

As | ported the eP16 design from an eP32 proj&t6eshd, uartl6.vhd, and
gpiol6.vhd are changed from a 32-bit design to-ail@esign. Widths of registers,
buses and signals had to be changed, but mostdtagements remain the same.
Syplicity compiles them correctly. ram_memory.whas changed to use the
RAM_DQ module provided in the Diamond system. dtixchange the eForth
system and get a new target image in mem.mif, yame o generate a new
ram_memory.vhd file, so that the new eForth tamgeige can be included in
ram_memory.vhd.

To change ram_memory.vhd, click Tools>IPexpresauvoke IPexpress. Select

RAM_DQ module. Fillin a file name of ram_memonydaselect VHDL as module
output, and you get a screen like Figure 11.:

25

S e Bl TR i e —)
Eile Edit View Project Design Process Tools Window Help
rEg-rd@giradih@ERAQAQAQBEE RN EEED
YECELESCEEGAEU-RBY FEREE @
Process g x | (StartPage [| I Reports [| BE tPexpress [| 'E-‘"_x-
a ¥ synthesize Design gj H % -2 & By
l L Synplify Pro =
% Translate Design Mame = RAM_DQ 7.1
4 % Map Design i Subtractor - ‘
| & % Map Trace 4 & DSP_Modules S lipes g Hodile] 7t
[#] %L Veritag Simulation File ik MAC Module Name: RAM DQ
[#] %L VHDL Simulation File fnd pMuLT
i ?&. Place & Route Design E MULTADDSUE Project Path: C: flscc/diamondfep 150 Browse
[#] % Place & Route Trace o MULTADDSUBSUM File Name: ram_memory
[¥] %L 10 Timing Analysis 4 17 Memory_Modules]
4 2 ExportFiles 4 & Distributed_RAM Fachis Rl I]
[#] 2 IEIS Model {4 Distributed_DPRAM Device Family: LatticeXP2
[« g Verilog Simulation File tid Distr?butediRQM Part Name: LFXPI-5E-STNI44C
[7 2 VHDL Simulation File & Distributed SPRAM
[% JEDEC File 4 % EBR_Components Synthesis: | SynplifyPro
{4 raM_DP
{7 RAM_DP_TRUE
| 3 raMDQ s customze
&t rROM
o AFo
it FIFQ_DC LA - i
int RAM_Based _Shift Register =
‘ Process |7F|IeL'ist 4 m | b %Conﬁguraﬁun @About
Qutput g x
Starting: "prj_project open "C:/lscc/diamond/epl5r/epl5.1ldE""
Tel Console | Output | Error | Warning
Ready Mem Usage: 26,604 K

Figure1ll. RAM _DQin IExpress

Click the Customize button, and you get a RAM_DQ@fmuration panel. Make the
following selections:

Memory depth: 4096

Memory width: 16 bits

No output latch

Memory type: synchronous

Optimization: time

Initializing file: mem.mif

File type: Hex-address

26

Configuration |Generate Log |

RAM_DO Configuration \ Advanced \‘
— Clock Specify the size of the Rak_D0)
I — | ClockEn T : ,
‘ Address Depth 4096 [2-131072) Data'width |16 [1-25E)
' —Ead ™ Enable Outpit Regi
oS0 nable Output Begister
—=WE [Provide Byte Enables Bte Size 19 _‘ﬂ
! A ddhess[11:0] Reset Mode dsync % Spnc
Optirnization T Area * Speed
e [1ata[15:00 |
atal15:0] temary File: | merm.mil J
emary File Format: ¢ Binany ¢ Hex @ Addressed Hex
E stimated R esource Usage: :
EER: 4 [~ Enable ECC (not supported for D ata ‘wWidth > B4)
Fipeline Stages for 0 and ERROR Output iU ﬁ
Buz Ordering Style:
|Big Endian [M5E:LSE] j
[~ Import IPX to Diamond project Generate Close Help
=

Figure1l2. RAM_DQ Module Configuration

Click the Generate button and a new mem_memorsodyzed. There is a
ram_memory_templ.vhd file containing the VHDL canfration code you can copy
and paste into eP16_chip.vhd.

In the Project panel, click Process tab and selétte process boxes, as shown in
Figure 13.

27

S e WA .. B8 U8
+ Lattice Diamon: -~ y, !

Eile Edit View Project Design Process TJools Window Help
P-ErOgdairaydh GERAVQALAQ E:me =
Al aE

PEGBERESBEEG Weols T @I T
Process & X | {f StertPage [) | & Repors [0 | A5 tPexpress 3 | HE
I a2 iynthesiz.eDaswgn E@ge 2 s
+ Synplify Pro
2 Translate Design Mame RAM DQ 7.1
4 Map Design i Subtractor i ‘
[2 MapTrace 4 & DSP_Modules S lipes g Hodile] 71
[7] 2 Veritag Simulation File ik MAC Module Name: RAM DQ
[¥] ¥ VHDL Simulation File o MuLT
4 2 Place &Route Design @: MULTADDSUE Project Path: C: flscc/diamondfep 150 Browse...
[#] & Place & Route Trace E MULTADDSUBSUM File Name: ram_memory
[¥ 2 1O Timing Analysis 4 17 Memory_Modules
aZ Export Files 4 & Distributed_RAM MockkeOulpin: |VHDL 'l
[#] 2 IEIS Model {4 Distributed_DPRAM Device Family: LatticeXP2
Ii\ & Verilog Simulstion File tid D‘Str?bUtEdeOM Part Name: LFXP2-5E-5TN144C
[VHDL Simulation File @ Distributed SPRAM
[#]| 2 JEDEC File 4 % EBR_Components Synthesis: SynplifyPro
{4 raM_DP
{7 RAM_DP_TRUE |
@: RAM_DQ = Customize |
&t rROM
o AFo
g FIFO_DC L] [o g
RAM_Based_Shift_Register = =
Process | FleList | « - ' & Configuration | (=¥ About |
Quiput § x
Starting: "prj_project open "C:/lscc/diamond/epl5r/epl5.1ldE""
| TdConsole | output | Error I Warning |
Ready Mem Usage: 34 868 K

Figure13. Select Synthesis Process

Pull down the Process Menu and select the Rerubuatbn. It invokes Synplicity
Synthesis tools to analyze and to synthesize #aggd. Synplicity will analyze all
VHDL files and synthesize this design accordingljfter each process step, a green
check mark is places after each selection boxdizate that this step is completed
successfully.

If you are to change this design, this is probdbéyplace you will spend lots of time
editing your VHDL files and then run Synplicity Sinesizer repeatedly. The
synthesizer is very generous in sending you lotgashing and error messages.
Look up each error message and try to fix the gmolh your VHDL files.

4.3 Simulatethe eP16

Lattice bundles Active-HDL simulation tools fromaddc in the Diamond system.
Active-HDL itself is a very complicated system, ayali need to spend considerable
time learning it.

In the older ispLEVEL IDE, you need a test benchDIHile to simulate your design.
It can generate a template of a test bench foMdiyL module in your design, to
help you build the test bench. In Diamond, you specify simulation functions to
input signals directly, and a test bench file it meeded.

Pull down the Tools Menu and select the SimulatMrard button. The
Active-HDL simulator starts and shows you a seofesindows. One window asks
you for a project name. Another asks you to camfour RTL simulation level.
Just click the Next> button until the simulatoadually loaded. Then you get a

28

screen like Figure 14.

ctive-HDL 8.3 {simul simul) - untitled.awc

NE

File Edit Search Miew Workspace Design Simulation Waveform Tools Window Help

-
o ox

O Unsorted
- simul

| &% Add NewFile
1 & E gpicl6vhd
2 i+ Eh/ ram_memory.vhd
3 R vartlbvhd
4
5

i Bl eplévhd
i+ &/ eplb_chip.vhd
- "’\: Add New Library
ﬂ" simul library
wiffilf work library

Cirsor 1 =

2

Brel zom @y 00 snmrOm @3 &S] »m e 100« » [l =
EErree 0 MO L ACRARAR MM F sAAADE
Fﬁ eplf_chip (behavioral) j Signal name IVaIue] 1 : i 400] a00 1200

MNUM [INS

Figure14. HDL Simulator

On the Design Browser panel to the left, click 8teucture tab at the bottom, then
select the eP16_chip(Behavioral) model button,yamdget a list of signals as shown

in Figure 15.

Now, pull down the Simulation Menu and select thiéidlize Simulation button. It
will change the values of all the signals in tha@Rchip design from “Unavailable”

to “U” and “X”. Select the signals you like to sihate.
select the following signals:

Aclk

Arst

Uart o

Memory_data_o

Memory_data_i

Memory_addr

System_addr

System_data_o

29

| reccomand that you

L

= — - :
tive-HDL 8.3 (simul simul) - untitled.awc . TR L= | B m
File Edit Search Miew Workspace Design Simulation Waveform Tools Window Help & ow ox

D EH s E R B IOLEN MY OR D 5SS r e wnbld s 2 =i
[& O " T o
| Becian Browee [HB G s ACAARAS A « v MM A3 3 A EASRE A AR
[ep16_chip (achavioral | | Sigralname [value [e e e
#1F ep16_chip (behavioral) - 2
& std.standard El
—H& std.TEXTIO
I ieee.std logic 1164

- ican ctd lanic mice

Name |Va|ue i

ar m_clic Unavailable

o memory_data_o Unavailable

o memory_data_i Unavailable —
& memory_addr Unavailable
o systemn_addr Unavailable

n

ar systemn_data_o Unavailable

o systemn_read Unavailable

nr systemn_write Unavailable —

o system_ack Unavailable

ar cpu_data i Unavailable

o cpu_addr_o Unavailable

& cpu_data_ o Unavailable

& cpu_m_read Unavailable

A cpu_m_write Unavailable

o cpu_intack Unavailable = sl

4] o | »

[
f [&1 Files % Structure /Z3Resources | g'_\ﬂrﬂ,es

Hﬁ;r&_ﬂﬂ_w_. i
[[NUM INS 2|

Figure15. Select cpl6 chip module

Right chick on the selected signals and select “toadd/aveform” option and you will
see the screen as shown in Figure 16.

= == - - T =
tive-HDL 8.3 {simul simul) - untitled.awc . L e = s le= B ﬂ
Eile Edit Search Miew Workspace Design Simulation Waveform Tools Window Help A ow ox

II\'D"H|“'0%'I B @F oS sns 0% O 5 S0 »orr 00nHo B < b [f=l=="
= =

| BeciiBrovec Ok QTR AR« MM 43 A HERERRA s AN
Fﬁ epl6_chip (behavioral) ;! Signal name |Va|ue I T e - - wEe o -+ kg
#{ epl6_chip (behavioral) - ik | & e
B stdstandard El ki | i
o usrt o u
‘ &l std.TEXTIO T . e
I ieee.std_logic_1164 4] o
el b e ar memory_sddr | Uy
| Bl ar system_adds | [T
Name | Yalue P arsystem_data o | ulrpu
B aclke u
B arst u
[& interrupt_i uy =
B uart i u
@ uart o u L
® acknowledge o U
* = joport uuuy
rom_rst u
rom_clk u I
& memory_data o XXKK
[& memory dats_i UUUU
o memory_addr uuy
¥ ar systern_addr uuuy
|| ® o cystem_data_o Uuuy = i =
o ocystern_read u - sl e =
4 * n] ['ﬂ .
Files % Structure /ZjResources | @._\ﬂrﬂﬁes +F untitled.awe

COTTSuTe I

— oy

Figure16. Select Simulation Signals.

30

Before running the simulation, you have to spetify input signals aclk and arst.
Right click the aclk under “Signal Name” and selihet “Simulators...” option in the
pop-up menu. The Simulators window pops up. $éock” in the “Type”
panel, and you get the screen shown in Figure 17.

r - f
[l Stimulators ? 23
Signals] Hotkeys | Predefined |
Signals: Type:
Mame Type Forces a clock pulse of a specific frequency and
ook Clook_| Syt
Llack —{0fs : 100ns :
: :
fo :
' MA0E
Formula i :
@ —
010 Frequency: [10MHz
110
Walue
[Display paths Save Strength: [Overide —_|v

h A

Figurel7. Simulate Master Clock

Click the Apply button and then the Close buttoaafirm that you apply a 10 MHz
clock signal to aclk input.

Right click the arst signal under “Signal Name” asdect the “Simulators...” option
in the pop-up menu. The Simulators window pops Upelect “Formula” in the
“Type” panel, and specify that the reset signattstat “0” level for 1000 ns and then
changes to “1”. Now you get the the screen showkigure 18.

Click the Apply button and then the Close buttoraafirm that you apply the proper
reset signal to arst input.

31

-

=l Stimulators ? =

Signals | Hotkeys | Predefined |

Signals: Type:
| Name | Type | @ Forces a waveform defined by a textual formula,
W aclk Clock
—_— walue: IU tirne offzet: IEI n:
o
1 walue: I'I tirme offzet; I'I 000 ns
t
f() wallie: I time offzet: I
Formula repeat above sequence everny: I
010 Enter formula: Accept
o ID Oz, 11000 ne [T Active-CaD
Ve format.

[Display paths Save |

Strength: Im

L o

Figure18. Simulate Master Reset

Now, pull down the Simulation Menu and select thmRntil button. Enter “1 ms”
in the data box to let the simulator run for 1 ms:

- B
Run Until [

E nker time vau want to run simulation ustil,
Default time unit iz picozecond.

[3 I'I ms

k. I Cancel

Figure19. Select Simulation Time

Click the OK button and the simulator produceswia@eforms as shown in Figure
20.

32

ctive-HDL 8.3 {simul ,simul) - untitled.awc

File Edit Search Miew Workspace Design Simulation Waveform Tools Window Help
B2l zoE | @0 niy QW &S| r M e e m
I RS L T

Signal name IVaIue] £ OB U Gt W o 40 W 3 £ 800 W B B oepo 8 m f s

Fﬁ epl6_chip (behavioral)
-4F ep16_chip (behavioral)

- aclk 1

] » | 4]

| B std.standard

& std.TEXTIO Ebtn !

= 7 . [H ar memory_data_o 2964
@ ieee.std logic_ 1164 i oAt 0004
| T ican ctd lnnic mice T e iy S Fot
| L] ar system_sddr FFO1
Mame J Value in ar system_dsta_c 0000

= aclk 0 |

B arst 1 |

=

[* & interrupt_i uy e |

B uart i u ‘

< uart o 0 A

< acknowledge o 0
= joport 7z

o om_rst 0

ar m_clic 1

¥ & memory_data_o 896A
[* & memory_data_i 0000
* & memory_addr 16C
+] A system_addr 016C
[ar systern_data_o 8964

Cursor 1
o system_read 1 -

n | »

< T
fl @ Files & Structure /i3 Resources | @ ibraries

i [ECE

untitied awc

NUM NS

Figure20. Simulation Waveforms

Look at the signal uart_o. Itis showing that eB&6ds out a Carriage Return
(ASCII 0xD) and a Line Feed (ASCII 0xA) charactei¥ou are now assured that the
eP16 is coded correctly.

Click the Zoom In button (A magnifier glass witiaign) 10 times, and drag the
waveforms to the beginning to the left, you wileghis screen in Figure 21.

- _ _
tive-HDL 83 {simul simul) - untitled.awe T \7

File Edit Seach View Workspace Design Simulation Waveform Tools Window Help @ o» x
Bl wH B wNO s O D EE e or 100 Hd B o« ims 9
\Desicn Broweer O AL v e 4 ARE SRR e b |mm -7 B
[epi6_chip (behavioral)] || Sgralneme [valoe [~ am - aw o ew o+ ome o - cwe mm o - ww o+ o omw o o
+-1F ep16_chip (behavioral) - o ackk 1 e (5 oy P) 2 e £) P gameseps| 1 L[[T [T [T T4
@ stdstandard m
o usro
| @ staTEXTIO - | || =@ ar memory_aata_o 0se1 _oww 5] G008 3 0R08 3 0oRa Y ASEE Yy 0oer {0000
Mieeestd loaic 1160 T 2000 03 (R

[ar memory_addr 000 o0 [Gl G G T i T

bd ar system_saar 0000 7000 01)(_uee1 _0s%a _y_eeoe _oa1 Y _we0r) 0en
Mame Value &l ar system_deta_o 0861 0080 L] 6000 05085 (5] EFE 065 660

& aclk

= arst

& ® interrupt i

& uart i

- uart o

® acknowledge_o
1 © ioport

" m_rst

P o e cc e
3

m_clk
& o memory_data o 896A
& memory_datai 0000
o memory_addr 16C
w0 system addr 016C
W system_dateo 896A

Cursor 1
o system_read 1 .

m 3

«
i| 1 Files /%FStruc... /EaReso... i libraries

[= TOSUE

INUM TNS

Figure2l. Expanded View of the Waveforms

33

The signals memory_addr and system_addr make lbgfiog sequence of changes:
000->001->801->862->806->807->808->...

which show that eP16 starts at address 0 on jasgts to COLD, which calls

DIAGNOSE. These are the correct sequence of ictsbns after eP16 starts.

4.4 Layout the eP16

After logic design of the eP16 is verified by syegls and simulation, you have to
assign input and output signals to proper pinshenXiP2-5E-5TN144C chip
according to the board layout of the Brevia2 Kt tlsat you can actually run the eP16
on the BreviaZ2 Kit.

Pull down Tools Menu, and select Package View. Pdokage View, you see a
Package panel on the right in Figure 22.

-

-
+ Lattice Diamond - Package View U E=EENT
Eile Edit View Project Design Process Tools Window Help

A-ErEgEiradRh aERaeaa He):E

PERECESDEHEGRA=USER
File List 8 % | iE startPage | I Reports || |
4 ’—@ epl5 -
I LFXP2-5E-5TNL44C [
4 Strategies
[é} Area
D}?’ O Assistant
E}‘ Quick
F}' Tirning
Strategyl
4 E—E epld
4 Input Files
Wi epl6vhd [work]
¥ epl6_chipivhd [work]
M gpicl6.vhd [work]

E @

Package View [J | @ Preference Preview 8| %

m

ifziwEsEP e P

ram_memory.vhd [work]
Wi uartlvhd [work]
Synthesis Constraint Files
a LPF Constraint Files
[eplslpf
Debug Files
4 Script Files
simul/sirmul.spf
Analysis Files s
! Process I File List |

Output a X
Loading physical preference information
Finish loading physical preference informaticn
INFO - Custom column is not available

INFO - ./eplS.ccl

| TdConsole | output | Errer I Warning |
Ready Mem Usage: 75,320 K

Figure22. Package View of XP2 Chip

34

Pull down the View Menu and select Preference rewou get to see the contents
of the preference file eP15.pdf.

It looks liketthraFigure 23.

¥ (=5 fwi

| (& stertpage £ | FE reporis () | B padegeven [| Gl Preferencepreviewd | [a]x

-
Lattice Diamond - Preference Preview -
File Edit View Project Design Process Tools Window Help
0 = A e b LN — v . o : 0
Ar-ErigdB8ruagfh GERAQAQ Eme|EE
P = o g fir s R sin e
PEGELCESDEEGA=USHESY FEEEHE @
FCI_E_List _5 x
4 [epis ||| commeRcIaL ;
W LFXP2-5E-5TN144C RVL_ALIAS "adk” "cputfck”;
s || Strategies BLOCK RESETPATHS ;
- BLOCK ASYHCPATHS ;
[Area LOCATE COMP “arst” SITE "18";
B 1/0 Assistant LOCATE COMP "uart_j" SITE "110" ;
B Quick LOCATE COMP “uart_o” SITE "108";
e LOCATE COMP “interrupt_i_0" SITE "307;
Tirning LOCATE COMP “interrupt_i_1" SITE "31";
Strategyl LOCATE COMP “interrupt_i_2" SITE "327;
+ [ept5 LOCATE COMP “interrupt_i_3" 5ITE "35";
Hep LOCATE COMP “interrupt_i_4" SITE "367;
4 | Input Files £/ || LOCATE COMP “oport_7" SITE "37";
LOCATE COMP “iopart_g" SITE "50";
¥ Eptauhd ook} LOCATE COMP ioport_9” SITE "52° ;
M) ep16_chip.vhd [work] LOCATE COMP “iopart_0" SITE "46";
¥ gpic16.vhd [work] LOCATE COMP “ioport_1" SITE "45°;
T LOCATE COMP ‘iopart_2" SITE "44";
] ¥ LOCATE COMP “ioport_3" SITE "43";
ﬁ uartlé.vhd [work] LOCATE COMP “ioport_4" SITE "40°;
Synthesis Constraint Files LOCATE Cone Topert) SE
; e LOCATE COMP “ioport_6" SITE "38";
4 |1 LPF Constraint Files LOCATE COMP “ioport_10" SITE 53"
[epispf LOCATE COMP “ack” SITE "21";
: ||| LoCATE coMP “iopart_11" SITE "547;
: DEF'“'Q Files LOCATE COMP “iopart_12" SITE "55%;
4 [l Seript Files LOCATE COMP Jloport_13" SITE "56" ;
simul/simul spf LOCATE COMP “ioport_147 SITE "57°;
Fe - ||| LOCATE COMP “iopart_15" SITE "58";
il _nnatysis Hies FREQUENCY PORT "ack™ 50.000000 MHz ;
l_PrUOeSS | File List CLOCK T QLT AlLPORTS 20.000000 ns £l KPORT "actk”
Output

m

Loading physical preference information

Finish loading physical preference informaticn

INFO - Custom column is not available
INFO - ./eplS.ccl

Tel Console | Output ‘ Error | Warning
|Ready

Mem Usage: 75,340 K

Figure23. Pin Assignments of eP16

35

Signals on the eP16 chip and their corresponding @n the XP2-5E-5TN144C chip
package are listed in the following table:

Signal Pin Number
aclk 21
arst 19
interrupt_i[0] 58
interrupt_i[1] 57
interrupt_i[2] 56
interrupt_i[3] 55
interrupt_i[4] 54
ioport[7] 37
ioport[8] 53
ioport[9] 52
ioport[0] 46
ioport[1] 45
ioport[2] 44
ioport[3] 43
ioport[4] 40
ioport[5] 39
ioport[6] 38
ioport[10] 50
ioport[11] 1
ioport[12] 2
ioport[13] 5
ioport[14] 6
ioport[15] 7
uart_i 110
uart o 109

You have to get the signals assigned to correst pitherwise, the eP16 will not work
on the BreviaZ2 Kit.

36

4.5 Programming eP16

The Brevia2 Kit includes a USB cable to connead 8C. Connect Brevia2 Kit to
your PC. If you have done the systhesis and stmunlaf eP15 correctly, you can
now program eP16 to Brevia2 and test eP16.

Bring up Diamond, and open the eP16 project. &uln Tools Menu and select
Programmer. A Programmer window opens up like shatvn in Figure24.

r -
= Lattice Diamond - Programmer - ep15.xcf * { = | S | S

Eile Edit View Project Design Process Tools Window Help
A-B-rHa S5 Y MO E
PEEBERS TEE
File List
4 @ epl5
i LFXP2-5E-5TN144C
4 Strategies
E’% Area 1| LatticeXP2 LFXP2-5E FLASH Erase,Program,Verify ::/lscc/diamond/ep15rfep15/ep15_ep15.jed
r:)"’ O Assistant
[:3’ Quick
= Timing
Strategyl
4 EE epl5
4 Input Files
¥ epl6ahd [work]
Wi epl6_chip.vhd [work]
Fﬁ gpiol6.wvhd [work]
% ram_memory.vhd [work]
M uartlvhd [work]
Synthesis Constraint Files
4 LPF Constraint Files
[eplsipf
Debug Files
- Script Files
Bl simul/simul.spf

=L EIEEEE

Enable Status Device Family Device Operation File Name

m

‘ Cable and IO Settings

| Process | Fielist | g i, *

Qutput § x

Board with FIDI USB Host Chip Detected.

Detected USB2 cable at port FIUSB-0

| TdConsole | output | Error® | Warning® |

Ready Mem Usage: 93,000 K
L

Figure24. Diamond Programmer

From the File Name section, click the Browse buttofhe File Name window
appears. Browse to the eP16 project folder, sdiecepl5 epl5.jed file, and click
the Open button. From the Operation list, chodashErase, Program, Verify, and
click the OK button.

The last button to the right on the top of the Paagmer Panel is the Program button.
Click it and Diamond reprograms the XP2 chip onBhevia2 Kit.

If HyperTerminal is already opened and configu@d15,200 baud, 1 start bit, 8 data
bits, 1 stop bit, no parity, and no flow contralegs the reset button on Brevia2, and
you should see that the eP16 boots up and displaign-on message, “eP16 v3.01”,
as shown in Figure 25.

37

B ' ting - HyperTerminal

||:|||E|ﬂ:h1

File Edit View Call Transfer Help
D & & 08

eP16 v3.01

Auto detect 115200 8-N-1

= NUM

Connected 0:00:08

Figure25. eP16 Sign-on Message

You can now type in FORTH commands and interadt wne eForth system that runs
on the eP16 microcontroller you just downloadeth®Brevia Board.

Type these commands:
: TEST1 CR ." HELLO, WORLD!" ;

TEST1

You will see that eForth produces the results asvghn Figure 26

To demonstrate that you have full control overBinevia2 Kit, let us do some

exercises on the GPIO port.

First, here are thisters in the GPIO module, which

we can access by reading and writing to memortilmes OXFF04-0xFFO6:

Address Register Function

OxFF04 gpio_out When written, send data to gpida por
OxFFO5 gpio_dir_reg Select port pin direction: @uty 1-output
OxFF06 gpio_in Read gpio port

38

B ' ting - HyperTerminal | o (S

File Edit View Call Transfer Help
D & 35 DE

eP16 v3.01
0K

0K

:OEESTl CR .™ HELLO, WORLD!" ; OK
TEST1

HELLO, WORLD! OK

Connected 0:01:16 Auto detect 115200 8-N-1 - CAPS NUM

Figure26. TheUniversal Greeting

Type the following commands to configure the loBdvits in the GPIO port as
outputs and the next upper 8 bits as inputs:

HEX
FF FFO5 !

Now, you will see that all 8 LED's on the Brevi& @amrned on. To turn them off,

type:
FF FFO4 !

To turn on only one LED, type:
FE FF0O4 !

To read the push button switches on the Brevia dgpe:
FFO6 ?

FFFE is the result displayed. The lower 8 bits)(fftow that only one LED was
turned on. The upper 8 bits (FF) show that alhgustton switches are off. Push
down switch SW5 and type:

FFO6 ?

The returned results change to FDFE, as closing S\I§ down bit 9 of the GPIO
port.

The above exercises leave this display on Hyperifadimas shown in Figure 27.

39

B ' ting - HyperTerminal | =R |

File Edit View Call Transfer Help
O & 3 05

eP16 v3.01
114

0K

:OEESTl CR .™ HELLO, WORLD!" ; OK
TEST1

HELLO, WORLD! OK
FF FFOS ' FF?
HEX OK

0K

0K

FF FFEBS ' OK

FF FFB4 ' 0K

FE FFB4 ' OK
FFB6 7 EFFE OK

Connected 0:03:51 Auto detect 115200 8-N-1 - CAPS NUM

Figure27. 10 Exerciseson Brevia2 Kit

These exercises should be very convincing thatywme a nice interactive operating
system hosted on the top of a very versatile aneepial 16-bit microcontroller. Al
these things on a $49 FPGA development kit!

40

Chapter 5. TheeP16 Design in VHDL

Here | will describe a complete 16-bit microconoldesigned in VHDL. It
includes a CPU core, a RAM memory module, a UAR a general purpose GPIO
port. Together with the eForth operating systeadpced by a metacompiler, | build
a complete running Forth system, ready for appboatievelopment. Itis a
complete hardware and software development sysiesrglore SOC applications.
The FPGA chip LatticeXP2-5E can host this compheterocontroller system, and it
is implemented on the LatticeXP2-5E Brevia2 Kitngsthe Diamond FPGA IDE
(Integrated Design Environment).

In the following sections, | will present VHDL codethe following files which
implement various modules of the eP16 microcorgrastem:

File Module

eP16 chip.vhd Top level microcontroller system
eP16.vhd eP16 CPU module
ram_memory.vhd RAM memory module

uart16.vhd Serial UART module

gpiol6.vhd General purpose parallel IO module

5.1 Top Leve eP16 Chip
VHDL code in eP16_chip.vhd instantiates all moduethe eP16 system.

Here are port signals defined for the top levelGe€tip. Since RAM is
implemented as an internal module, it is not nergs® bring out address and data
signals from the CPU core to the chip package. réfbee, only aclk, arst,
interrupt_i, acknowledge_o, uart_i, uart_o and wiséP10 pins are necessary to
implement a chip that runs the eForth system fog@am development. This eP16
system can be hosted in a very small package with 8ins.

I/O pins of this eP16 chip and their functions asdollows:

Port Signal Function

aclk External clock input

arst External reset input
interrupt_i External interrupt input
acknowledge o | Interrupt acknowledge
uart_i UART receiver input

uart o UART transmitter output
ioport General purpose 1/O port

41

_o kkx

- * (C) Copyright 2012, Offete Enterprises, Inc.

*

P y——

ALL RIGHTS RESERVED

*kkkkkkkkkkk

-- * Project:
-- * File:
-- * Author:

-- * Description:

*

FG in PROASIC

epl6_chip.vhd
Chien-Chia Wu

Top level block

-- * Hierarchy:parent:

*

*

-- * Revision
--* Date

--*09/19/02
--*01/02/03
--*01/29/03
--*02/24/03

*

--*02/27/03
-- *03/02/03
-- * 06/29/06
--*11/18/10
--*02/29/12

child :

History:
By Who Madification
Chien-Chia Wu Branch from epl6a.
Chien-Chia Wu Add SDI.
Chien-Chia Wu Add Boot.
Chien-Chia Wu Modify the module as

version.

Chien-Chia Wu Modify SDRAM byte-as
Chien-Chia Wu Add internal SRAM mo
Chen-Hanson Ting Add HMPP/Shifter/Co
Chen-Hanson Ting LatticeXP2 Brevia K
Chen-Hanson Ting Back to eP16

_o Fhkkkkkkkkkkkkkkkkhkhkhhhhhhkhhkkkkkhkkhkhkhkkhkkkkkkkx

library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

use ieee.std_logic_misc.all;

use ieee.std_logic_unsigned.all;

entity ep16_chip is

port(
-- input port
aclk: in std_logic;
arst: in std_logic;
interrupt_i: in std_logic_vector(4 downto 0);
uart_i: in std_logic;
-- output port
uart_o: out std_logic;
acknowledge_o: out std_logic;

-- GPIO Interface
ioport: inout std_logic_vector(15 downto 0)
);

end entity ep16_chip;

32-bits *

secable *
dule. *
ntroller *
it *

*

*kkkkkkkkkkk

42

In component declarations, the following modules@eclared:

Component Module Function

eP16 eP16 CPU core module
ram_memory RAM memory module

uart Serial UART module

gpio General purpose parallel I/O module

These modules are later instantiated and all gwis are connected to signals
defined in the top level system module.

eP16 Module

The eP16 module is a complete CPU core.

clk Input master clock

clr Input master reset

interrupt 5-bit Input external interrupt
data i 16-bit Input data bus

intack Output interrupt acknowledge
read Output memory/io read enable
write Output memory/io write enable
addr 16-bit Output address bus
data o 16-bit Output data bus

UART module

The UART module conforms to standard RS232 UARTHEjgations, although we
only use two I/O pins, rxd_i and txd_o.

used. Input/output signals in the UART moduleasdollows:
rst_i Input reset

ce | Input chip enable

read i Input read enable

write_| Input write enable

addr_i Input address bus

data i Input data bus

data_o Output data bus

rx_empty o Output receiver empty flag
rx_irg_o Output receiver interrupt request
tx_irg_o Output transmitter interrupt request
rxd_i Input receiver data

txd_o Output transmitter data

cts_i Input clear to send

rs_o Output ready to send

43

Its ioptplit signals are as follows:

No handshar flow control signals are

architecture behavioral of ep16_chip is
-- component declaration
component epl6 is

port(
-- input port
clk: in std_logic;
clr: in std_logic;
interrupt: in std_logic_vector(4 downto 0);
data i: in std_logic_vector(15 downto 0);
intack: out std_logic;
read: out std_logic;
write: out std_logic;
addr: out std_logic_vector(15 downto 0);
data_o: out std_logic_vector(15 downto 0)
);

end component;

component uart is

port(
-- input
clk_i: in std_logic;
rst_i: in std_logic;
ce_i in std_logic;
read i in std_logic;
write_i: in std_logic;
addr_i: in std_logic_vector(1 downto 0);
data_i: in std_logic_vector(15 downto 0);
-- output
data_o: out std_logic_vector(15 downto 0);

rx_empty_o:out std_logic;
rx_irg_o: out std_logic;
tx_irg_o: out std_logic;
-- external interface

rxd_i in std_logic;
txd_o: out std_logic;
cts i in std_logic;
rts_o: out std_logic

);

end component;

component ram_memory

port (
Clock: instd_logic;
ClockEn: instd_logic;
Reset: instd_logic;
WE: instd_logic;
Address: instd_logic_vector(11 downto 0);
Data: instd_logic_vector(15 downto 0);
Q: out std_logic_vector(15 downto 0));

end component;

44

RAM Module

The RAM_MEMORY module is configured to use the RAM) memory of
embedded block memory EBR in the LatticeXP2-5E FRGIfA. Input/output
signals are as follows:

Clock Input master clock
ClockEn Input clock enable
Reset Input master reset
WE Input write enable
Address Input address bus
Data Input data bus

Q Output data bus
GPIO Module

Input/output signals are as follows:

clr Input master reset
clk Input master clock
write Input write enable
read Input read enable
ce Input chip enable
addr Input address bus
data in Input data bus
gpio_in Input GPIO data
data_out Output data bus
gpio_out Output GPIO data
gpio_dir OutPut GPIO direction

45

Top Level Global Signals

Here are global signals defined in the top levdl&€hip. Their principal purposes
are connecting port signals of instantiated modulé$owever, many signals are
defined in terms of logical equations constructednfother signals. These logical
equations are then presented to the relevant madule

The following are Global signals in the eP16 chip:

Signal Function

m_rst Inverted master reset

m_clk Inverted master clock

memory data_o Memory data output bus
memory data | Memory data input bus
memory_addr Memory address bus
system_addr System address bus
system_data_o System data output bus
system_read System read enable
system_write System write enable
system_ack system interrupt acknowledge
cpu_data i CPU data input bus

cpu_addr o CPU address bus

cpu_data o CPU data output but
cpu_m_read CPU memory read enable
Ccpu_m_write CPU memory write enable
cpu_intack CPU interrupt acknowledge
cpu_ready i CPU ready input

cpu_ack o CPU interrupt acknowledge output
uart_ce UART chip enable

uart_addr UART address bus
uart_data_i UART data input bus
uart_data_o UART data output bus
uart_rx_empty UART receiver empty flag
uart_rx_irq UART receiver interrupt request flag
uart_tx_irq UART transmitter interrupt reugest flag
uart_rxd UART receiver data

uart_txd UART transmitter data
uart_cts UART clear to send

uart_rts UART ready to send

gpio_ce GPIO chip enable

gpio_addr GPIO address bus
gpio_data_i GPIO data input bus

gpio_in GPIO input pins

gpio_data_o GPIO data output bus
gpio_out GPIO output pins

gpio_dir GPIO input/output direction

46

component gpio

port(
-- input port
clr: in std_logic;
clk: in std_logic;
write: in std_logic;
read: in std_logic;
ce: in std_logic;
addr: in std_logic_vector(1 downto 0);
data_in: in std_logic_vector(15 downto 0);
gpio_in: in std_logic_vector(15 downto 0);

-- output port

data_out: out
gpio_out: out
gpio_dir: out

std_logic_vector(15 downto 0);
std_logic_vector(15 downto 0);
std_logic_vector(15 downto 0)

);

end component;

-- interal globle signal
signal m_rst: std_logic;
signal m_clk: std_logic;
signal memory_data_o: std_logic_vector(15 downto O
signal memory_data_i: std_logic_vector(15 downto O
signal memory_addr: std_logic_vector(11 downto 0)

-- internal signal for system bus
signal system_addr: std_logic_vector(15 downto 0)
signal system_data_o: std_logic_vector(15 downto 0O
signal system_read: std_logic;
signal system_write: std_logic;
signal system_ack: std_logic;

-- internal signal for cpu

signal cpu_data_i: std_logic_vector(15 downto 0);
signal cpu_addr_o: std_logic_vector(15 downto 0);
signal cpu_data_o: std_logic_vector(15 downto 0);
signal cpu_m_read: std_logic;

signal cpu_m_write: std_logic;

signal cpu_intack: std_logic;

signal cpu_ready _i: std_logic;

signal cpu_ack_o: std_logic;

-- internal signal for uart

signal uart_ce: std_logic;
signal uart_addr: std_logic_vector(1 downto 0);
signal uart_data_i: std_logic_vector(15 downto 0)

signal uart_data_o: std_logic_vector(15 downto 0)
signal uart_rx_empty: std_logic;

signal uart_rx_irq: std_logic;

signal uart_tx_irq: std_logic;

signal uart_rxd: std_logic;
signal uart_txd: std_logic;
signal uart_cts: std_logic;
signal uart_rts: std_logic;

47

CPU Component Binding

cpul is the eP16 CPU module instantiated in th&eRip. Its port map specifies
how internal signals in cpul are connected to dlsigmals in the chip system.

m_rst is inverted from the external master regst, a The external master reset, arst,
is connected to a RESET pushbutton on the BrevigzaKd is normally pulled up to
VCC. When RESET is pressed down, arst is pulledndim ground. Internal reset
signals sent to the eP16 CPU and other memory/@nddvices use positive logic;
therefore, arst must be inverted to m_rst, whialsisd to reset internal modules.

Here are local signals defined in the top levelefjistem. They are used to
connect the eP16 CPU to other modules.

Local Signal Function

m_rst Master reset, inverted from external reset.

m_clk Master clock, inverted from external clockatmcommodate memory
timing constraints.

system_addr System address from CPU to all othéuias.

system_read Read enable from CPU to all other nesdul

system_write | Write enable from CPU to all other nied.

system_ack Acknowledge from CPU.

cpu_ready i CPU ready.

ready System ready.

cpu_data_i Data from another module to CPU. Indialdyte is selected if the
byte word signal is set.

system_data_pSystem data bus connected to memory and 1/0O maduMsmory
and I/O devices are enabled by Bits 31-28 of systddiess.

UART Component Binding

The UART used in the eP16 is initialized to 115,9@@d, 1 start bit, 8 data bits, 2
stop bits, no parity, and no flow control. CTS &S, though defined in the UART
module, are not used and not brought out to thé gRgkage. Only RXD and TXD
are brought out.

Local Signal| Function

uart_ce UART enable

uart_addr UART register address

uart data_i | Data from CPU

uart_rxd Receiver input

uart_txd Transmitter output

48

-- internal signal for gpio

signal gpio_ce: std_logic;

signal gpio_addr: std_logic_vector(1 downto 0);
signal gpio_data_i: std_logic_vector(15 downto 0)
signal gpio_in: std_logic_vector(15 downto 0);
signal gpio_data_o: std_logic_vector(15 downto 0)
signal gpio_out: std_logic_vector(15 downto 0);
signal gpio_dir: std_logic_vector(15 downto 0);

begin

_o kkkx

- Component Binding

_o kkkx

e CPU Block

cpul: epl6
port map (
-- input port
clk => aclk,
clr=>m_rst,
interrupt => interrupt_i,
data_i => cpu_data i,
intack => acknowledge_o,
read => cpu_m_read,
write => cpu_m_write,
addr => cpu_addr_o,
data_o =>cpu_data_o

):

_ kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkk

- Internal Globle Signal Circuit

_ kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkk

m_rst <= not arst;

m_clk <= not aclk;
system_addr <= cpu_addr_o;
system_read <= cpu_m_read;
system_write <= cpu_m_write;
system_ack <= cpu_ack_o;
cpu_ready i<='1"

cpu_data i <= system_data_o;

system_data_o <= cpu_data_o when (system_write="1
(rer:(Se(renow_data_o when(system_addr(15)='0")
ﬁ[asr?_data_owhen(system_addr(15downt02):"11111
Slpsii_data_owhen(system_addr(15downt02):"11111
else (others =>'Z");

*kkkkkkkkkkk

*kkkkkkkkkkk

*kkkkkkkkkkk

*kkkkkkkkkkk

111000000")

111000001")

49

RAM Component Binding

The RAM module handles only 16-bit words. Memoxd=a sent from CPU to
memory modules, is at bits 11-0 to address 4 K wofdL6-bit word memory.

All other modules in the eP16 chip are clockedh®ydxternal master clock, aclk,
except the RAM memory module, which is clocked byreverted clock, m_clk.

The reason is that the RAM_DQ library module froattice IPexpress is a
synchronous RAM memory, in which the rising edgéhef clock latches the input
address bus and input data bus. The eP16 exgtrishsionous RAM/ROM

memory modules, which must supply memory data tpuwduo the data bus when the
address bus is valid. All registers and stackbéneP16 behave this way. Latching
the address bus would waste one clock cycle faryawemory access, making it
impossible to execute all eP16 machine instructinrassingle clock cycle.

A compromise between design specification and viadable RAM_DQ memory
module is to clock RAM_DQ modules with invertedaktan_clk, which forces
latching the memory address bus a half-cycle eadrethe rising edge of m_clk,
which occurs on the falling edge of aclk. A disadtage in clocking the memory
address bus earlier is that the memory access spestcbe twice the CPU speed.
This is not a problem with FPGAs running at 50 MHEmbedded RAM memory in
FPGAs are generally much faster than 50 MHz. H®@wresne should be careful in
pushing CPU speed higher. You have to avoid coiotein accessing the memory
bus.

Local Signal Function

system_write Write enable.

memory _addr | Word address sent to memory module.

memory data_i| Data sent by CPU to memory modu

memory_data_¢ Data output from memory module.

GPI10O Component Binding

The GPIO module is defined as a 16-bit bidirectidf@ port. The gpio_idr signal
can be used to change the I/O direction dynamical§owever, in actual
implementation, 1/0O devices used are switches, diEdplay, and LCD display.

They do not require dynamic I/O redirection. Ie #P16 system, gpio_in and
gpio_out are merged into one ioport and broughihéoeP16 package pins. io_port
pins are defined as inout pins.

Local Signal| Function

gpio_ce GPIO chip enable

gpio_addr GPIO register address

gpio_data_i| Data send from CPU to GPIO module

gpio_in Data received from GPIO input pin

\"2J

ioport 16 bit bidirectional GPIO port

50

- o—————————=—=—= UART Block ===========

uartl : uart
port map (
-- input
clk_i => aclk,
rst_i=>m_rst,
ce_i=>uart_ce,
read_i => system_read,
write_i => system_write,
addr_i => uart_addr,
data_i => uart_data i,
-- output
data_o => uart_data_o,
rx_empty o =>uart_rx_empty,
rx_irg_o => uart_rx_irq,
tx_irg_o =>uart_tx_irq,
-- external interface
rxd_i=>uart_rxd,
txd_o =>uart_txd,
cts_i=>uart_cts,
rts_o =>uart_rts
);
uart_ce <="1'when (system_addr(15 downto 2)="111
else 0
uart_addr <= system_addr(1 downto 0);
uart_data i <= system_data_o;
uart_rxd <= uart_i;
uart_o <= uart_txd;

e RAM Block ============
ram_memory_O : ram_memory
PORT MAP (

Address=> memory_addr,

Clock =>m_clk,

ClockEn=>"'1',

Reset =>'0,

Data => memory_data i,

WE => system_write,

Q =>memory_data o

);

memory_addr <= cpu_addr_o(11 downto 0);
memory_data_i <= cpu_data_o;

11111000000")

51

e === ———=———=—=— GPIO Block =========== —=—==—=======

gpiol : gpio

port map (
-- input port
clr=>m_rst,
clk => aclk,
write => system_write,
read => system_read,
ce => gpio_ce,
addr => gpio_addr,
data_in => gpio_data_i,
gpio_in => gpio_in,
-- output port
data_out => gpio_data_o,
gpio_out => gpio_out,
gpio_dir => gpio_dir

);

gpio_ce <="1'when (system_addr(15 downto 2)="111 11111000001")
else '0";

gpio_addr <= system_addr(1 downto 0);

gpio_data i <= system_data_o;

gpio_in <= ioport;

ioport(0) <= gpio_out(0) when gpio_dir(0)="1" e Ise 'Z";
ioport(1) <= gpio_out(1) when gpio_dir(1)="1" e Ise 'Z';
ioport(2) <= gpio_out(2) when gpio_dir(2)="1" e Ise 'Z';
ioport(3) <= gpio_out(3) when gpio_dir(3)="1" e Ise 'Z';
ioport(4) <= gpio_out(4) when gpio_dir(4)="1" e Ise 'Z';
ioport(5) <= gpio_out(5) when gpio_dir(5)="1" e Ise 'Z';
ioport(6) <= gpio_out(6) when gpio_dir(6)="1" e Ise 'Z';
ioport(7) <= gpio_out(7) when gpio_dir(7)="1" e Ise 'Z';
ioport(8) <= gpio_out(8) when gpio_dir(8)="1" e Ise 'Z';
ioport(9) <= gpio_out(9) when gpio_dir(9)="1" e Ise 'Z';
ioport(10) <= gpio_out(10) when gpio_dir(10)="1"e Ise 'Z';
ioport(11) <= gpio_out(11) when gpio_dir(11)="1"'e Ise 'Z";
ioport(12) <= gpio_out(12) when gpio_dir(12)="1"'e Ise 'Z";
ioport(13) <= gpio_out(13) when gpio_dir(13)="1"e Ise 'Z';
ioport(14) <= gpio_out(14) when gpio_dir(14)="1"'e Ise 'Z";
ioport(15) <= gpio_out(15) when gpio_dir(15)="1"e Ise 'Z';

end behavioral;

52

5.2 TheeP16 CPU Module
VHDL code of the eP16 CPU module is in the eP16fitkd

When | first learnt VHDL, the text books told meluoild things in modules, to

collect modules into libraries, and then call thesmlules out in the main design.

So I did that in the original design of the P16.fteAa while, | found that the CPU
was not that complicated, and all modules | neexbedd be combined together. The
end result was that | had only one module andntysntire CPU.

When RESET is set high, all registers and bothkstace cleared to 0. When
RESET is cleared to 0, the CLOCK input drives tRé& On the rising edge of
CLOCK, the program word in memory address O is retwthe | register. The first
instruction in | is decoded; i.e., a set of consiginals are sent to all components in
the eP16. On the rising edge of the next CLOCKy data are latched into
appropriate registers and stacks depending omsteiction. The next instruction is
decoded and thus executed, and so forth.

A memory interface is provided to connect to mendeyices through a 16-bit
address bus and a 16-bit data bus, with read eaablarite enable control signals.

When reading a program word, the P register diive®xternal address bus and a
program word is read into the | register. Wherdireg or writing data words, the A
register drives the external address bus, andagdateead into the T register, or written
from the T register, to the external data bus.

Two stacks are used in the eP16: a return stastote return addresses from nested
subroutine call instructions, and a parameter stagitore parameters passed among
nested subroutines. The top two elements on tfepder stack are usually
implemented as registers. They are the T redistétop”, and the S register for
“second”. The top of the return stack is also ienpénted as the R register.

The T and S registers provide two inputs to the AiMdich carries out arithmetic and
logic operations on data from T and S, and retugsalts to the T register.

The return stack, R, T, and S registers, and paerstack can be viewed as a giant
shift register array. Data can be shifted righlieftrin this giant array. The R, T
and S registers are windows in this giant arrayphago programmers in writing
programms.

The eP16.vhd file contains the complete specifcatif this CPU in VHDL. You

will be amazed at how simple a 16-bit CPU can behope it will stimulate your
mind, and encourage you to design you own drearmogoatroller.

53

_o Fhkkkkkkkkkkkkkkkkhkhhkhkhhhhkhhkhkhkkkkkhkkhkkhkkkkkkkx

*==

eP16 Microprocessor CPU Core

*kkkkkkkkk

-- * FPGA Project:

-- * File:
-- * Author:

-- * Description:

*

16-Bit CPU in Altera SOPC Build
epl6.vhd

C.H.Ting
epl6 CPU Block

-- * Revision History:

-- * Date
-- * 06/06/05
-- *06/10/05

*

--*06/27/05
--*07/27/05
--*08/07/10
--*11/18/10
--*02/29/12

By Who Modification

C.H. Ting Convert EP24 to 32-bits.

Robyn King Made compatible with Alter
Builder.

C.H. Ting Removed Line Drawing Engine

Robyn King Cleaned up code.

C.H.Ting Returnto eP32p

C.H. Ting Portto LatticeXP2 Brevia K

Chen-Hanson Ting Back to eP16

_ kk

a SOPC*

*

it *
*

*kkkkkkkkk

library ieee;

use ieee.std logic_1164.all;
use ieee.std_logic_arith.all;

use ieee.std_logic_misc.all;

use ieee.std_logic_unsigned.all;

entity epl6 is
generic(width: integer := 16);

port(
-- input port
clk: in std_logic;
clr: in std_logic;

interrupt: in std_logic_vector(4 downto 0);

data_i: in std_logic_vector(width-1 downto 0);
intack: outstd_logic;

read: outstd_logic;

write: outstd_logic;

addr: outstd_logic_vector(width-1 downto 0);
data o: outstd_logic_vector(width-1 downto 0)

)i
end entity epl6;

54

I/O Signals of the eP16 CPU

In the VHDL terminology, the entity section speesfithe interface signals from
circuit component to the external world. The eRi6a microcontroller chip, shows
the pin-out of the chip in its entity section: rn&asclock, control signals, data bus,
address bus, and I/O ports. Here are detailedfgagions of these busses and
signals:

Signal Function

clk Master clock

clr Master reset

interrupt| 5-bit interrupt ports
data i 16 bit data input bus
intack Interrupt acknowledge
read Memory read enable
write Memory write enable
addr 16 bit address bus
data_o | 16 bit data output bus

TheeP16 CPU Module

An architecture section in VHDL is the body of thesign, in which all internal
signals and logic are contained. In an architecsection, signals and registers are
defined first. Then there is a subsection wheregan define concurrent logic, a
subsection where you can define sequential logid,aasubsection defining a finite
state machine that runs the show. For the purpbdecumentation and clear
referencing to signals, one can define constantsgiace literal references.

55

architecture behavioral of ep16 is
type stack is
array(31 downto 0) of std_logic_vector(width downt
signal s_stack,r_stack: stack;
signal slot: integer range 0 to 5;
signal sp,spl,rp,rpl: std_logic_vector(4 downto 0)
signal t,s,sum: std_logic_vector(width downto 0);
signal a,r: std_logic_vector(width downto 0);
signal t_in,r_in,a_in: std_logic_vector(width down
signal code: std_logic_vector(4 downto 0);
signal t_sel: std_logic_vector(3 downto 0);
signal p_sel: std_logic_vector(2 downto 0);
signal a_sel: std_logic_vector(2 downto 0);
signal r_sel: std_logic_vector(1 downto 0);
signal addr_sel: std_logic;
signal spush,spopp,rpush,rpopp,inten,intload,intse
tload,rload,aload,pload,iload,reset,z: std_logic;
signal r_z,int_z: std_logic;
signal i,p,p_in: std_logic_vector(width-1 downto 0
-- machine instructions selected by code
constant bra : std_logic_vector(4 downto 0) :="000
constant ret : std_logic_vector(4 downto 0) :="000
constant bz : std_logic_vector(4 downto 0) :="000
constant bc : std_logic_vector(4 downto 0) :="000

constant nxt : std_logic_vector(4 downto 0) :="001
constant ei : std_logic_vector(4 downto 0) :="001
constant Idp : std_logic_vector(4 downto 0) :="010
constant Idi : std_logic_vector(4 downto 0) :="010
constant Id : std_logic_vector(4 downto 0) :="010
constant stp : std_logic_vector(4 downto 0) :="011
constant rr8 : std_logic_vector(4 downto 0) :="011
constant st : std_logic_vector(4 downto 0) :="011
constant com : std_logic_vector(4 downto 0) :="100
constant shl : std_logic_vector(4 downto 0) :="100
constant shr : std_logic_vector(4 downto 0) :="100
constant mul : std_logic_vector(4 downto 0) :="100
constant xorr: std_logic_vector(4 downto 0) :="101
constant andd: std_logic_vector(4 downto 0) :="101
constant div : std_logic_vector(4 downto 0) :="101
constant addd: std_logic_vector(4 downto 0) :="101
constant popr: std_logic_vector(4 downto 0) :="110
constant Ida : std_logic_vector(4 downto 0) :="110
constant dup : std_logic_vector(4 downto 0) :="110
constant over: std_logic_vector(4 downto 0) :="110
constant pushr:std_logic_vector(4 downto 0) :="111
constant sta : std_logic_vector(4 downto 0) :="111
constant nop : std_logic_vector(4 downto 0) :="111
constant drop: std_logic_vector(4 downto 0) :="111

0 0);

to 0);

o1
10%
117

o1
10"
o1
10"
117

56

Registers, Busses and Signals

Here are the registers, busses, and the internéiotsignals contained in the eP16
CPU. They are all defined as signals in VHDL. Hinay are actually

implemented depends on how they are used in camwstatements and in sequential
statements.

Signal Function

s_stack | Parameter stack.

r_stack | Return stack.

slot Output of slot counter in finite state machine

sp Parameter stack pointer.

spl Alternate parameter stack pointer. It alwaystha value of sp+1.
rp Return stack pointer.

rpl Alternate return stack pointer. It always Hesvalue of rp+1.

Accumulator or T register, top of parameter stack

Top element of parameter stack. S is a pseudsteeg

t
S
r Top element of return stack. R is a real registe
a Address register, A.

Instruction register, |.

[
p Program counter, P.

sum Output from an adder T+S.

t in Input to T register.

r_in Input to R register.

a in Input to A register.

p_in: Input to P register.

code 5-bit opcode extracted from | register.

spush Control signals to push parameter stack.

spopp Control signals to pop parameter stack.

rpush Control signals to push return stack.

rpopp Control signals to pop return stack.

tload Enable signals to load T register.

aload Enable signals to load A register.

pload Enable signals to load P register.

iload Enable signals to load | register.

z One-bit signal, true if T=0, otherwise false.

r z One-bit signal, true if R=0, otherwise false.

int_z One-bit signal, true if interrupt inputs @l€0, otherwise false.
inten Enable interrupts.

intset Set if interrupt is enabled

intload | Latch interrupt vector into P register.

a_sel Select alternate argument to A register.
p_sel Select alternate argument to P register.
r_sel Select alternate argument to R register.
t sel Select alternate argument to T register.

addr_sell Select alternate argument to address bus.

57

-- mux to t register, selected by t_sel

constant not_t: std_logic_vector :="0000";
constant s_xor_t: std_logic_vector :="0001";
constant s_and_t: std_logic_vector :="0010";
constants_or_t: std_logic_vector :="0011";
constant sum_t: std_logic_vector :="0100";
constant shr_sum: std_logic_vector :="0101";
constant shr_t: std_logic_vector :="0110";
constant shr_t t: std_logic_vector :="0111";
constant shl_sum_a_t: std_logic_vector :="1000";
constant shl_t_a_t: std_logic_vector :="1001";
constant shi_t: std_logic_vector :="1010";

constant s_t: std_logic_vector :="1011";
constant a_t: std_logic_vector :="1100";
constantr_t: std_logic_vector :="1101";

constant data_t: std_logic_vector :="1110";
constant rr8_t: std_logic_vector :="1111";
-- mux to a register, selected by a_sel
constantt_a: std_logic_vector :="001";
constant al_a: std_logic_vector :="010";
constant shr_sum_a: std_logic_vector :="011";
constant shr_t_a: std_logic_vector :="100";
constant shl_sum_a: std_logic_vector :="101";
-- mux to r register, selected by r_sel
constantrout_r: std_logic_vector :="00";

constant t_r: std_logic_vector :="01";
constantrl r: std_logic_vector :="10";
constantp_r: std_logic_vector :="11";
-- mux to p register, selected by p_sel
constanti_p: std_logic_vector :="000";
constant pi_p: std_logic_vector :="001";
constant p1_p: std_logic_vector :="010";
constantr_p: std_logic_vector :="011";

constantint_p: std_logic_vector :="100";
-- mux to memory bus, selected by addr_sel

constant p_addr: std_logic :='0";

constant a_addr: std_logic :='1";

begin

data_o<= t(width-1 downto 0);

intack <= inten;

s <= s_stack(conv_integer(sp));

sum<=(('0'&t(width-1 downto 0)) +
('0'&s(width-1 downto 0)));

with t_sel select

t_in <= (not t) when not_t,
(t xor s) when s_xor_t,
(tand s) when s_and _t,
sum when sum_t,
(t(width-1 downto 0) & '0") when shl_t,
(t(width-1 downto 0) & a(width-1)) when shl_t a t
(sum(width-1 downto 0)&a(width-1)) when shl_sum_a
('0'&sum(width downto 1)) when shr_sum,
('0'&t(width-1)&t(width-1 downto 1)) when shr_t,
("00"&t(width-1 downto 1)) when shr_t t,

58

Opcodes

Machine instructions, opcodes and their functiaiesas follows:

Instruction | Code Function

bra 00000 Jump to address contained in cumstruction.

ret 00001 Return from a subroutine to main paoy Pop return
address from return stack and store it in P.

bz 00010 If T=0, jump to address containedument
instruction; else continue.

bc 00011 If Carry is set, jump to address daethin current
instruction; else continue.

nxt 00101 If R is not 0, jump to address cargdiin current
instruction, and decrement R by 1; else pop R saack
continue.

ei 00110 Enable interrupts.

Idp 01001 Push T on S stack, read memory wonckgd to by A
into T. Increment A by 1.

Idi 01010 Push T on S stack, read memory woidtpd to by P
into T. Increment P by 1.

Id 01011 Push T on S stack, read memory wonckgad to by A
into T.

stp 01101 Store T into memory pointed to bynsrement A by
1. Pop Sstackto T.

8 01110 Rotate T right by 8 bits.

st 01111 Store T into memory pointed to by 8pFS stack to T.

com 10000 Complement T (1's complement).

shl 10001 Shift T left by 1 bit.

shr 10010 Shift T right by 1 bit.

mul 10011 Multiplication step. If A(0)=1, addt&T, otherwise T
Is not changed. Shift T:A pair right by 1 bit.

Xorr 10100 Pop S stack and XOR itto T.

andd 10101 Pop S stack and AND it to T.

div 10100 Division step. If T+S produces a gaadd S to T,
otherwise T is not changed. Shift Tpair left by 1 bit.
Shift carry into A(0).

addd 10111 Pop S stack and add it to T.

popr 11000 Push T onto S stack. Pop R statk to

Ida 11001 Push T onto S stack. Copy Ato T.

dup 11010 Push T onto S stack.

over 11011 Push T onto S stack. Copy originatents of Sto T.

pushr 11100 Push T onto R stack. Pop S sta€k to

sta 11101 Copy Tto A. Pop S stack to T.

nop 11110 No operation.

drop 11111 Pop S stack to T.

59

s when s_t,
awhen a_t,
rwhenr t,
t(width)&t(7 downto 0)&t(width-1 downto 8)when rr
'0'&data_i(width-1 downto 0) when others;
with slot select
code <=i(14 downto 10) when 1,
i(9 downto 5) when 2,
i(4 downto 0) when 3,
nop when others;
with a_sel select
a in<=a+lwhenal a,
(‘'0'&t(0)&a(width-1 downto 1)) when shr_t a,
('0'&sum(0)&a(width-1 downto 1)) when shr_sum_a,
(‘'0'&a(width-2 downto 0)&sum(width)) when shl_sum
t when others;
with r_sel select
r in<=rlwhenrl r,
'0'&p when p_r,
r_stack(conv_integer(rp)) when rout_r,
t when others;
with p_sel select
p_in <= (p(width-1) & i(width-2 downto 0)) when i_
(p(width-1 downtowidth-6) &i(width-7 downto 0))
r(width-1 downto 0) whenr_p,
("00000000000"&interrupt(4 downto 0)) when int_p
p+1 when others;
with addr_sel select
addr <= a(width-1 downto 0) when a_addr
p(width-1 downto 0) when others;
Z <= not(t(15) or t(14) or t(13) or t(12)
or t(11) or t(10) or t(9) or t(8)
or t(7) or t(6) or t(5) or t(4)
or t(3) or t(2) or t(1) or t(0));
r_z <= not(r(15) or r(14) or r(13) or r(12)
or r(11) or r(10) or r(9) or r(8)
or r(7) or r(6) or r(5) or r(4)
or r(3) or r(2) or r(1) or r(0));
int_z <= interrupt(0) or interrupt(1) or interrupt
or interrupt(3) or interrupt(4) ;

8 t,

p)
whenpi_p,

)

60

Concurrent Assignments

Most of the concurrent assignments (using “<=")@wroute signals from one place
to another. A few concurrent assignments actudlgome useful work, like

Signal | Source

sum Get sum of T+S.

z z=1if T=0; z=0if T is not O.

rz r z=1if R=0; r_z=0if R is not (.

The most interesting concurrent assignments agetbhbthe multiplexers. Here are
a few multiplexers explicitly defined, and theitesg signals:

Multiplexer | Select Signal
TMUX t sel

RMUX r_sel

XMUX a_sel

PMUX p_sel
Address Bug addr_sel
code slot

The VHDL code on the previous page shows consi@neg used to select signals to
the various multiplexers.

Many other more complicated multiplexers are ndinge explicitly, but are
implicitly defined in case statements of individnahchine instructions. Please
examine these statements to see how particulaalsigre selected and routed.

data_o| Output data bus in the eP16 core, always senddadatn the T register.
When we write data to memory and to peripheral cksyithe address is
provided in the A register, and data are providethe T register.

intack | Interrupt acknowledge signal.

S A pseudo-register. It is not defined as a regisut as the top of the
parameter stack, s_stack, pointed to by the pagrattck pointer, sp. It
is always used as the second argument, next {b tbgister, for arithmetic
and logic machine instructions that expect two areuts.

sum Adder in the eP16. It is shared by machinguosons ADD, MUL and
DIV. It adds data from the T register and S regish the top of the
parameter stack.

tin Output bus of a giant multiplexer, which prde$ input data to the T
register. Machine instructions changing the Tstgimust provide the
proper select signal, t_sel, to this multiplexegéd the desired data routeg
tot_in. Then, on the rising edge of the next klatata presented on t_ir
are latched into the T register.

code | Output bus of the instruction multiplexer, ethselects one of 3 machine
instructions stored in the | register. “slot” s#fethe machine instruction
to be executed in the current clock cycle. “codél be used in the
instruction decoder’s decode process, to proddegaet control signals tq
execute the selected machine instruction.

61

a_in Onput bus of the AMUX multiplexer, which norlgagets data from the T
register. However, when executing memory readéamistructions, it can
optionally increment by selecting data from the=gister through an
increment circuit. Used in MUL and DIV instruct®rit takes data from
the A register shifted to the right or left, resipegly. Shifting operations
are coordinated with the T register so that therédister pair acts like a
33-bit shift register.

r_in Input bus of the R register, which selectadedm the P register for the

CALL instruction, the T register for the PUSHR insttion, the top of the
return stack r_stack for the POPR instruction, famch R-1 for the NEXT
instruction. It manages the return stack in theéeP

1%

p_in Input bus of the P register, which selecta diadm P+1 in slotO to fetch th
next program word, the R register for the RET undion. In slotO, if
interrupt pins are not all zero and when interrgresenabled, p_in select
5 bits from the interrupt input pins, zero extentted6 bits, to jump to an
interrupt service routine.

U

addr Output bus of the address multiplexer, whidviples addresses to output
bus addr_o in the eP16 module. It outputs addnetbe P register when
reading program words, or addresses in the A grgien reading and
writing data to/from memory or peripheral devices.

z Return a 1 if bits T(0) to T(31) are all zerof ahy of these bits is not a
zero, z returns a zero. It is used by the BZ utsion to branch to a new
program location when T is zero.

r z Return a 1 if bits R(0) to R(31) are all zerdf any of these bits are not a
zero, r_z returns a zero. Itis used by the NEXSEruction to loop to a
new program location when R is zero. It allowspiog in a single clock
cycle.

int_z | Return a 1 if bits interrupt(0) to interrupk(@re all zero. If any of these
bits are not a zero and interrupts are enablagdna js made to an interrupt
service routine.

Sequential Assignments

This big sequential assignment is the instructiecoder of the eP16 CPU. In the
“decode” process, control signals are initialized ¢hen set according to the needs of
each different machine instruction. These corgighals flow out to concurrent
assignments to select proper signals to be latchiedegisters and stacks, on the
rising edge of the next clock pulse.

When slot=0, that is, the slot machine is execudirsiptO function, the external 5 bit
interrupt signals are examined. If all interruiginsls are low, the address of the
next program word in the P register is sent othéaddress bus. “iload” is set so
that a program word from the external data bustvéllatched into the | register.
“pload” is also set so that the P register williberemented.

If any bit of the interrupt signals is high, theswubroutine call is forced to an address
from location 1 to 31, as specified by the 5-biemupt input signals.

62

-- sequential assignments, with slot and code
decode: process(code,a,z,r_z,int_z,t,slot,sum,inte
begin

t_sel<="0000";
a_sel<="000";
p_sel<="000"
r_sel<="00";
addr_sel<='0};
spush<='0";
spopp<="0";
rpush<="0";
rpopp<='0%;
tload<='0";
aload<='0"
pload<='0";
rload<='0";
write<="0";
read<="0',
iload<="'0";
reset<="0'"
intload<='0";
intset<="0";
if slot=0 then
if (int_z="1" and inten="1") then
pload<="1";
p_sel<=int_p;--process interrupts
rpush<="1";
r_sel<=p_r;
rload<='1";
reset<="'1";
else iload<="1";
p_sel<=pl_p;--fetch next word
pload<="1";
read<="'1"
end if;
elsif slot=1 and i(width-1)="0" then
pload<="'1";
p_sel<=i_p;--process call
rpush<="1"
r_sel<=p_r;
rload<="'1";
reset<="1"
else
case code is
when bra =>
pload<="1";
p_sel<=pi_p;
reset<="'1";
when ret => pload<="1";
p_sel<=r_p;
rpopp<=14
r_sel<=rout_r;
rload<="1";
reset<='1"
intset<="0",
intload<="1",

63

If “slot” is not zero, then a machine code in slailslot5 of the | register is selected
and executed. Executing a machine instructiommsly setting some control

signals to route proper data through concurrentlagd connecting multiplexers to
targeted registers and stacks. On the rising efitfee next master clock, all data are
latched and then the next machine instruction c®ded and executed.

First, default values of signals are assigned.alllmstructions, only a few of these
signals are changed to achieve specific functiand,we only have to specify those
changed signals for those instructions.

Here are the signals changed when the instrucéqaoencer is in Slot0. This
includes external interrupt pins. If one or marerrupts are set, the CPU calls an
interrupt service routine from memory location B3ta If no interrupt is set, this
causes the program word pointed to by the P redistee fetched, and the instruction
sequencer is incremented to Slotl, in preparatia@xécute the first instruction in the
program word.

If there is an interrupt request, call an interragrvice routine.

Signal Function

pload<="1"' Load P register

p_sel<=int p Select interrupt vector for P register
rpush<="1' Push P to R and return stack

r sel<=p r Select P for RMUX

rload<="'1' Load R register

reset<="1' Force next cycle to slotO

If there is no interrupt, slot=1, and 1(15)=0, wavk a CALL instruction. To execute
a CALL instruction, set the following signals:

pload<="1' Load P register

p_sel<=pi_p Select address field for P register
rpush<="1' Push R and r_stack

r sel<=p r Select P to load R register
rload<="1' Load R register

reset<="1' Force next cycle to slotO

If there is no interrupt request, and slot=0, fedoll execute the next program word.

Signal Function

iload<="1" Load | register

p_sel<=pl p Select P+1 to P register

pload<="1" Load P register

read<="1' Read program memory to P register

64

when bz =>
if z="1" then
pload<='1";
p_sel<=pi_p;
end if;
tload<="1";
t sel<=s t;
spopp<="1",
reset<="'1";
when bc =>
if t(width)="1" then
pload<='1";
p_sel<=pi_p;
end if;
tload<="1";
t sel<=s t;
spopp<="1",
reset<="1",
when nxt =>
if r_ z="0'then
p_sel<=pi_p;
pload<="1";
r_sel<=rl r;
else
r_sel<=rout r;
rpopp<="1"
end if;
rload<="1";
reset<="1",
when ei =>
intset<="1",
intload<="1";
when Idp => addr_sel<=a_addr;
a_sel<=al a;
aload<='1"
tload<="1";
t sel<=data_t;
spush<='1";
read<="'1"
when Idi => pload<="1";
p_sel<=pl_p;
tload<="1";
t _sel<=data_t;
spush<="1";
read<="1"
when Id => addr_sel<=a_addr;
tload<="1";
t sel<=data_t;
spush<='1";
read<="'1"
when stp => addr_sel<=a_addr;
aload<="1";
a_sel<=al a;
tload<="1";
t sel<=s t;
spopp<="1",
write<="1";

65

Decoder

The big case statement using “code” as a seleetermines which machine
instruction to execute, which control signals at which signals must go through
which multiplexers, and which signals are to beHatl into registers and stacks.

If the instruction sequencer is not in Slot0, ieentes instruction “code” selected
from one of 3 slots in the | register. This isiang case statement listing all changed
signals associated with each and every instructidrhese instructions change
appropriate signals to route proper signals thrduggses and multiplexers, to be
latched into stacks and registers on the risingeddghe next clock.

Transfer Instructions

Following are transfer instructions, which loadeawtarget program address into the
P register, and thus jump to different memory lmcat The target address is formed
by appending the contents of the address fiell@tdng instruction to the upper

6-bit page address in the P register. Therefargster instructions can branch to any
location within the current 1 K word page. Onlg tRET instruction can branch to
the entire 16-bit memory space, because it obtenarget address from the R
register.

To execute the BRA instruction, set the followingnsls:

pload<="1' Load P register
p_sel<=pi_p Select address field for P register
reset<="1' Force next cycle to slotO

To execute the RET instruction, set the followirgnals:

pload<="1' Load P register

p_sel<=r p Select R register to load P register
rpopp<='1' Pop return stack

r_sel<=rout_r Select r_stack to load R register
rload<="'1' Load R register

reset<="1' Force next cycle to slotO
intset<="0' Clear interrupt enable flag
intload<="1" Load inten register

To execute the BZ instruction, set the followingrsils if T=0:

pload<="1"' Load P register

p_sel<=pi_p Select address field for P register

Always set the following signals:

tload<="'1' Load T register

t sel<=s t Select top of s_stack to load T register
spopp<="1' Pop s_stack

reset<="1' Force next cycle to slotO

66

when st => addr_sel<=a_addr;
tload<="1";
t sel<=s t;
spopp<='1;
write<="1";
when rr8 =>
tload<="'1"
t_sel<=rr8 t;
when com =>
tload<="'1"
t_sel<=not t;
when shl =>
tload<="1";
t sel<=shl_t;
when shr =>
tload<="'1"
t_sel<=shr _t;
when mul =>
aload<='1"
tload<="1";
if a(0)="1' then
t sel<=shr_sum;
a_sel<=shr_sum_a;
else t sel<=shr_t t;
a_sel<=shr t a;
end if;
when xorr =>
tload<="'1"
t sel<=s_xor_t;
spopp<="1}
when andd =>
tload<="'1"
t sel<=s_and t;
spopp<="1}
when div =>
aload<="1";
tload<="'1"
a_sel<=shl_sum_a;
if sum(width)="1" then
t sel<=shl _sum_a t;
else t sel<=shl_t a t;
end if;
when addd =>
tload<="'1"
t_sel<=sum_t;
spopp<="1}
when popr =>
tload<="'1"
t sel<=r t;
spush<="'1";
r_sel<=rout r;
rload<="1";
rpopp<="1"
when Ida =>
tload<="'1"
t sel<=a_t;
spush<="1";

67

To execute the BC instruction, set the followingnsils if carry T(16)=1:

pload<="1"' Load P register

p_sel<=pi p Select address field for P register

Always set the following signals:

tload<="1' Load T register

t sel<=s t Select top of s_stack to load T register
spopp<="1' Pop s_stack

reset<="1' Force next cycle to slotO

The NXT instruction is the most complicated trangfstruction. It is a single cycle
loop instruction. It uses the R register as a loaynter, counting down towards 0.
When R is not zero, it is decremented, and progemister P is loaded with an
address in the address field of this long transfgruction. The loop is then
repeated. When R is decremented to O, the R eegist r_stack are popped, and
execution continues with the next program word. e Tdop is thus terminated.

To execute the NXT instruction, set the followingmls if R is not O:

p_sel<=pi_p Select address field for P register
pload<="1' Load P register
r sel<=rl_r Load R-1 into R register

Set the following signals if R is O:

r_sel<=rout_r Select top of r_stack to load R regis

rpopp<=1' Pop r_stack

Always set the following signals:

rload<="1' Load R register

reset<="1' Force next cycle to slotO

Enable Interrupts

To execute the El instruction, set the followingrsils:

intset<="1" Set interrupt acknowledge flag

intload<="1" Load inten (interrupt enable) register

Memory Instructions

Following are the memory instructions, which reatadrom memory to the T
register or write data from the T register to meynorThe address of memory is
always in the A register. When reading, the Ts&giis pushed onto the parameter
stack. When writing, the parameter stack is pogpédte T register.

To execute the LDP instruction, set the followingnsls:

addr_sel<=a_addr Select A to load memory address bu
a sel<=al a Increment A register

aload<="1"' Load A register

tload<="1' Load T register

t sel<=data t Select data bus to load T register
spush<="1' Push s_stack

read<="1' Enable memory read

68

when dup =>
spush<='1";
when over =>
spush<='1";
tload<="'1"
t sel<=s t;
when pushr =>
tload<="1";
t sel<=s t;
rpush<="1";
r_sel<=t r;
rload<="1"
spopp<="1}
when sta =>
tload<="1";
t sel<=s t;
a_sel<=t_a;
aload<="1";
spopp<=1}
when nop => reset<="'1";
when drop =>
tload<="1";
t sel<=s t;
spopp<="1}
when others => null;
end case;
end if;
end process decode;

69

To execute the LDI instruction, set the followingrals:

pload<="1"' Load P register

p_sel<=pl p Select P+1 to load P register
tload<="1' Load T register

t sel<=data t Select data bus to load T register
spush<='1' Push s_stack

read<="1' Enable memory read

To execute the LD instruction, set the followingrsls:

addr_sel<=a_addr

Select A to load memory address bu

tload<="'1"

Load T register

t sel<=data_t

Select data bus to load T register

spush<='1'

Push s_stack

read<="1'

Enable memory read

To execute the STP instruction, set the followirggpals:

addr_sel<=a_addr

Select A to load memory address bu

aload<="1" Load A register

a sel<=al a Increment A register
tload<="1' Load T register

t sel<=s t Select R to load T register
spopp<="1' Pop s_stack

write<="1' Enable memory write

To execute the ST instruction, set the followingnsils:

addr_sel<=a_addr

Select A to load memory address bu

tload<="'1"

Load T register

t sel<=s t Select R to load T register
spopp<="1' Pop s_stack
write<="1' Enable memory write

ALU Instructions

To execute the RR8 instruction, set the followiignals:

tload<="1"

Load T register

t sel<=rr8 t

Select T rotate right 8 bit to loadegister

To execute the ST instruction, set the followingnsils:

tload<="'1"

Load T register

t sel<=not t

Select not(T) to load T register

To execute the SHL instruction, set the followingnsls:

tload<="'1"

Load T register

t sel<=shl t

Shift T left 1 bit

To execute the SHR instruction, set the followirgpals:

tload<="1"

Load T register

t sel<=shr_t

Shift T right 1 bit

70

To execute the XOR instruction, set the followingnals:

tload<="1' Load T register

t sel<=s xor_t Select (S xor T) to load T register
spopp<='1' Pop s_stack

To execute the AND instruction, set the followingrals:
tload<="1' Load T register

t sel<=s and _t Select (S and T) to load T register
spopp<='1' Pop s_stack

To execute the ADD instruction, set the followingrals:
tload<="1' Load T register

t sel<=sum_t Select (S + T) to load T register
spopp<='1' Pop s_stack

MUL Sep

The MUL step and DIV step instructions are the nooshplicated instructions.
They use T and A as a register pair. The T-A tegisair is shifted right or left, and
the T register may either receive results fromatiéer or remain unchanged.
Repeating these instructions is the simplest aadrbst efficient way to implement
an unsigned multiplier and an unsigned divider.

In the MUL instruction, the T and A registers aomsidered a 33-bit right-shift
register. Initially, a partial sum is loaded it register, a multiplier in the A
register, and a multiplicand in the S register. th# least significant bitin Ais 1, S is
added to T, and the resulting T-A pair is shifteght by 1 bit. If the least significant
bitin Ais O, T is not changed, and the T-A paishifted right by 1 bit. After
repeating the MUL instruction 16 times, the T-Aigtgr pair will contain a double
product of A*S +T.

To execute the MUL instruction when A(0)=1 :

aload<="1" Load A register

tload<="1" Load T register

t sel<=shr_sum Select right shifted (S+T):A
a_sel<=shr_sum_a Select right shifted (S+T):A
To execute the MUL instruction when A(0)=0 :
aload<="1" Load A register

tload<="1" Load T register

t sel<=shr t t Select right shifted T:A

a sel<=shr t a Select right shifted T:A

DIV Sep

In the DIV instruction, the T and A registers agaa considered a 33-bit left-shift
register. A double integer dividend is storedhie T-A register pair, and a negated
divisor is in the S register. In the ALU, the soffS and T is always computed by
an adder. If the carry bit in adder sum(16) iS 1s added to T, and the resulting T-A
pair is shifted left by 1 bit. If the carry bit adder is O, T is not changed, and the

71

T-A register pair is shifted left by 1 bit. Inleér case, the carry bit is shifted into the
least significant bit in the Aregister. After egiing the DIV instruction 17 times,
the A register contains the quotient, and the Tstegcontains 2x of the remainder of
division.

To execute the DIV instruction when the carry bing16)=1 :

aload<="1" Load A register

tload<="1" Load T register
a_sel<=shl_sum_a Select left shifted T:A

t sel<=shl sum_a_t Select left shifted (S+T):A
To execute the DIV instruction when the carry bing16)=0 :
aload<="1" Load A register

tload<="1" Load T register

a_sel<=shl sum_a Select left shifted T:A

t sel<=shl t a t Select left shifted T:A

Register and Stack Instructions

To execute the POPR instruction, set the follovaigpals:

tload<="'1' Load T register

t sel<=r t Select R to load T register
spush<='1' Push s_stack

r_sel<=rout_r Select r_stack to load R register
rload<="'1' Load R register

rpopp<=1' Pop r_stack

To execute the LDA instruction, set the followingrals:
tload<="1' Load T register

t sel<=a_t Select Ato load T register
spush<="1' Push s_stack

To execute the DUP instruction, set the followirgnals:

spush<="1"' | Pushs_stack

To execute the OVER instruction, set the followsignals:

spush<="1"' Push s_stack
tload<="1' Load T register
t sel<=s t Select S to load T register

To execute the PUSHR instruction, set the followsignals:

tload<="1' Load T register

t sel<=s t Select S to load T register
rpush<="1' Push r_stack

r sel<=t r Select T to load R register
rload<="'1' Load R register
spopp<='1' Pop s_stack

72

To execute the STA instruction, set the followingnals:

tload<="1' Load T register

t sel<=s t Select S to load T register
a sel<=t a Select T to load A register
aload<="1"' Load A register
spopp<="1' Pop s_stack

To execute the NOP instruction, set the followiigmnals:

reset<='1' | Force next cycle to slot0

To execute the DROP instruction, set the followsignals:

tload<="1' Load T register
t sel<=s t Select S to load T register
spopp<='1' Pop s_stack

Finite Sate M achine

Finite state machine “sync” is a process pacedbynaster clock “clk”. This is
what | called a Slot Machine. The master clockebia 4-state counter, “slot”, and
increments it from O to 3 and then repeats theemopi Each clock cycle can thus
be named slotO to slot3, according to the conteftise signal “slot”.

Machine instructions are decoded in the “decodetess, where control and select
signals are set and data are routed through camuagic and multiplexers. On the
rising edge of master clock “clk”, selected registend stacks latch outputs from
respective multiplexers. A machine instructiothigss executed. The “slot”
counter is incremented, and the next instructiomfthe next slot in the | register is
decoded and executed.

When “slot” is 3, or when a transfer instructionAld@., RET, BRA, BZ, or BNC) is
executed, the counter “slot” is cleared to 0. hiemext clock cycle, slot0, the eP16
will process an interrupt if any interrupt is pemgli or fetch the next program word
from memory and start executing machine instrustioontained in this program
word.

When “cIr” is set, the eP16 is in a reset state the reset state, all registers and both
stacks are cleared to 0, except spl and rpl, venemitialized to 1. When “clr” is
cleared to 0, the eP16 starts running. Since ttegiBter is cleared to 0 on reset, and
“slot” is 0, the program word in memory locatiomstetched from memory on the
rising edge of master clock “clk”. On the risindge of the next clock, the machine
instruction in slot1 of this program word is decdd@and executed. What happens
next depends on this instruction.

All elements in s_stack and r_stack are cleareagusifor-loop in the sync process.

When “cIr” is cleared to 0, the master clock stariging the Slot Machine and starts
the CPU running. (clk'event and clk="1") specitieat all actions occur on the rising
edge of the master clock “clk”.

73

-- finite state machine, processor control unit
sync: process(clk,clr) begin
if clr="1" then -- master reset
inten <='0'; slot <= 0;
sp <="00000"; spl1 <="00001";
rp <="00000"; rpl <="00001";
t <= (others =>'0");
r <= (others =>'0");
a <= (others =>"'0";
p <= (others =>'0Y;
i <= (others =>"'0");
foriiin s_stack'range loop
s_stack(ii) <= (others =>"'0");
r_stack(ii) <= (others =>"'0";
end loop;
elsif (clk'event and clk="1") then
if reset="1' or slot=3 then
slot <= 0;
else slot <= slot+1;
end if;
if intload="1" then
inten <= intset;
end if;
if iload="1" then
i <= data_i(width-1 downto 0);
end if;
if pload="1"' then
p <=p_in;
end if;
if tload="1" then
t<=t in;
end if;
if rload="1" then
r<=r_in;
end if;
if aload="1" then
a<=a_in;
end if;
if spush="1" then
s_stack(conv_integer(spl)) <=t;
sp <= sp+1;
spl <= spl+l;
elsif spopp="1' then
sp <= sp-1;
spl <= spl-1,
end if;
if rpush="1' then
r_stack(conv_integer(rpl)) <=r;
rp <=rp+1;
rpl <=rpl+1;
elsif rpopp="1' then
rp <=rp-1,
rpl <=rpl-1;
end if;
end if;
end process sync;

end behavioral;

74

On the rising edge of “clk”, the counter “slot”ircremented. When “slot” is
incremented to 3, or when reset=1, as a trans$¢énuiction (CALL, RET, BRA, BZ,
or BNC) is executed, “slot” is cleared to 0. I thext clock cycle, slotO, the eP16
will process an interrupt if any interrupt is pemgli or fetch the next program word
from memory and start executing machine instrustioontained in this program
word.

A set of signals, when set to 1, latches theireeBpe registers on the rising edge of
the master clock.

intload=1 inten register is aligned to intset, which enaldesdisables
interrupts.

iload=1 next program word is latched into | registe

pload=1 P register is loaded from PMUX.

tload=1 T register is loaded from TMUX.

rload=1 R register is loaded from RMUX.

aload=1 Aregister is loaded from AMUX.

The parameter stack and return stack are implemest&2 17-bit register arrays.
Stacks have to be pushed or popped in a singl& chode, concurrent with all other
actions in the CPU. When pushing, the stack pomigst be pre-incremented, and
when popping, the stack pointer must be post-desnézd. In conventional designs,
it would take another cycle to pre-increment alsfzminter. To make sure that all
stack actions are always accomplished in a sifgtskcycle, we add two auxiliary
stack pointers, spl and rpl, which are always onatcabove the principal stack
pointers, sp and rp, respectively. When pushipd),as rpl is used to write a new
stack element above the top of stack. When poppmor rp is used to read the top
element on the stack. Whenever sp or rp is charggddor rpl are changed
accordingly, too.

When pushing the parameter stack, spush=1. Tlegi$ter is copied to the top of
s_stack, pointed to by spl. This is what is cgllestincrementing, as spl is
pointing to a location above the top of the paramstack, pointed to by sp. Then,
both sp and spl are incremented, so that nowsmn$ing to the new location on top
of s_stack.

When popping the parameter stack, spopp=1. Nothiparticular needs to be done,
as the top of s_stack pointed to by sp is read oOn the rising edge of the next
clock, both sp and spl are decremented. Thisssgecrementing.

When pushing the return stack, rpush=1. The Rsteqgis copied to the top of
r_stack, pointed to by rpl. rpl is pointing tmedtion above the top of the return
stack, pointed to by rp. Then, both rp and rplimeeemented, so that now rp is
pointing to the new location on the top of r_stack.

When popping the return stack, rpopp=1. The tofhefr_stack pointed to by rp is
read out. On the rising edge of the next clockhlop and rpl are decremented.

The concurrent and sequential sections set umtie tircuits in the eP16 CPU.
The "sync" finite state machine sends out conigias to execute machine

75

instructions.

76

5.3 RAM Memory Module
The VHDL code of the RAM module is in the ram_meyndnd file.

The design of the memory module is different foGAR from different
manufacturers. It is the only module in the eRi tannot be ported across FPGA
chips. However, FPGA manufacturers generally supgmory blocks as VHDL
and Verilog modules. The user can pick the merb@ogk from a library, and
configure it to suit his design requirements. icatFPGA systems allow the user to
initialize a memory block so that the resulting maontroller system can boot up
immediately on power up.

For the eP16 system, the memory block has to bisgewed as follows:
Memory word width 16 bits

Memory depth 4096 or more words

Single phase clock

No input latch

No output latch

Some FPGAs contain ROM and RAM memory blocks. R@&Mmory must be
initialized to contain program code. The LatticeXias only RAM memory blocks,
but RAM memory is initialized from flash memory. hi§ configuration is very
convenient for microcontroller designs, becausentieeocontroller can be initialized
immediately from flash memory on power up, and paogs are executed in RAM.
No extra ROM memory is necessary to store prograae cand a single FPGA chip
becomes a complete microcontroller system.

The eForth system software to be executed on thé effip must be compiled and
copied into a mem.mif file. mem.mif must be copietd the eP16 project folder so
that the Diamond system can use it to initializeMRemory. When the eP16 chip
design is programmed into a LatticeXP2 chip, eFgadés along.

The eP16 uses memory of the simplest type, asynoieoRAM memory. No clock
signal is needed for reading. When the addressslkaiable, the addressed memory
cell puts its contents on the output data bus. MWWhemory is in the write mode,
write-enable is pulled high. Then when the wrileck pulse goes high, input data
on the data bus is written into the memory cellradsled by the address bus. This is
how most static RAM memory chips were designedianplemented. Most FPGA
manufacturers, however, choose to implement thalviRnodules as synchronous
RAM, which uses a clock pulse to first latch itsleebs and data bus, and then put the
addressed memory cell on the output data bus.

One must be very careful in clocking memory blockSynchronous memory is
incompatible with the eP16 design, because the meoamtents are not available
before the rising clock edge, after the memory esklis changed. In the eP16,
memory contents must be stable before the risiockatdge. This clocking problem
is solved by using synchronous memory blocks aackahg them with the falling
edge of the master clock. A disadvantage is tt@CiPU can only run at 1/2 of
maximum memory access speed. It is not a problgmmost FPGAs running at 50
MHz. It may become a problem when you have to phstspeed higher.

77

-- Tue Feb 28 22:34:58 2012

library IEEE;

use IEEE.std_logic_1164.all;
-- synopsys translate_off
library xp2;

use xp2.components.all;

-- synopsys translate_on

entity ram_memory is
port (

Clock: in std_logic;

ClockEn: in std_logic;

Reset: in std_logic;

WE: in std_logic;

Address: in std_logic_vector(11 downto 0);

Data: in std_logic_vector(15 downto 0);

Q: out std_logic_vector(15 downto 0));
end ram_memory;

architecture Structure of ram_memory is

-- internal signal declarations
signal scuba_vhi: std_logic;
signal scuba_vlo: std_logic;

-- local component declarations
component VHI
port (Z: out std_logic);
end component;
component VLO
port (Z: out std_logic);
end component;
component DP16KB
-- synopsys translate_off
generic (INITVAL_3F : in String; INITVAL_3E
INITVAL_3D : in String; INITVAL_3C
INITVAL_3B : in String; INITVAL_3A
INITVAL_39 : in String; INITVAL_38
INITVAL_37 : in String; INITVAL_36
INITVAL_35 : in String; INITVAL_34
INITVAL_33 : in String; INITVAL_32
INITVAL_31 : in String; INITVAL_30
INITVAL_2F : in String; INITVAL_2E
INITVAL_2D : in String; INITVAL_2C
INITVAL_2B : in String; INITVAL_2A
INITVAL_29 : in String; INITVAL_28
INITVAL_27 : in String; INITVAL_26
INITVAL_25 : in String; INITVAL_24

> in String;

:in String;
»in String;
:in String;
»in String;
:in String;
»in String;
»in String;
:in String;
»in String;
:in String;
»in String;
:in String;
»in String;

78

Only the first page of ram_memory.vhd is shownlmleft page. It is generated
automatically by the RAM_Q memory module in theXpress library of the

Diamond system. Terms used in this file are ina@mansible except to experts at
Lattice, and | will not try to comment on it. Wesf need to know its interface to the
eP16, and leave the details to Lattice and the Dinahsystem.

RAM memory is mapped in the the address space bet@end OxFFF.

Port signals defined for the RAM memory module are:

Port Signal| Function

address Address from CPU

clock Memory clock, inverted from master clock
clockEn Clock enable, always enabled

data Data input from CPU

reset Clear addfress and data registers, alwagbldt}
we Write enable from CPU

q Data output to CPU

VHDL code for this memory module is generated awteally by IPexpress in the
Diamond system. It is not printed here.

RAM memory must be initialized properly with a pram in it, so that when the eP16
chip is synthesized and downloaded into the FPG&ptrogram starts executing after
Reset is released and the clock is applied tolile ¢ RAM memory is initialized

with the contents of the eP16r.mem file. Thisig¢produced by the eForth
metacompiler, which builds a memory image of therdfsystem, and copies this
image into the eP16r.mem file. The ePl16r.memmiilst be copied into the folder
where all other VHDL files reside. When IPexprasthe Diamond System
generates mem_memory.vhd, it reads eP16r.mem ahai@s code instantiating
program words into the RAM module.

A few lines of data in mem.mif in Addressed-Hexat are as follows:

79

#Format=AddrHex
#Depth=4096
#Width=32
#AddrRadix=3
#DataRadix=3
0:861
4:544F
24:A0
25:A
26:9E9
27:9EE
28:9E9
29:599
2A:5D6
2D:9E9
101:4405
102:564F
103:5241
104:E03E
105:101
106:3002
107:3C
108:C7DE
109:8D0OC
10A:EB54
10B:87DE
10C:A83E
10D:FFFF
10E:106
10F:5503
110:2B4D
111:DF5E
112:8D15
113:EB54
114:87DE
115:A83E
116:1
117:10F
118:3F04
119:5544
11A:50
11B:EBDE
11C:891E
11D:E83E
11E:87DE
11F:118
120:4407

80

54 UART Module

The VHDL code of the UART module is in the uart.\iid.

A UART port is the simplest and the most effici# device allowing a FORTH
system to interact with users. With a UART porg @an bring up an eP16 system

on power-up and a user can immediately begin soé&waavelopment.

This UART system is set to 115,200 baud, 1 stasBaiata bits, 1 stop bit, no parity,
and no flow control.

4 registers are defined in the UART module, and tedresses and functions are as
follows:

Address| Register Function
OxFFO00| Baud Rate Register 16-bit baud rate counter
OxFFO01| Transmit Register Bits7-0, transmit data; bit8nsmitter status

OxFF02| Receive Status RegisteBit0, flow control, bit8 receiver status

OxFF03| Receive Buffer RegisterBits7-0, Receive data

Signals in UART modules are defined in an architects follows:

Port Signal | Function

clk i Master clock input

rst i Master reset input

ce | UART chip select input
read i Read enable input

write_| Write enable input

addr_i Register address input
data i Data input from CPU
data_o Data output to CPU
rx_empty o| Receiver buffer empty
rx_irg_o Receiver interrupt request
tx_irg_o Transmitter interrupt request
rxd_i Receiver data input

txd_o Transmitter data output
cts_i Clear-to-Send input

rs o Ready-to-Send output

The UART is initialized to run at 115,200 baud. ingsa 50 MHz crystal for the
master clock, the baud rate register is set to 43¥hen | switched to a 16 MHz
clock, the board seemed to work fine at 38,400 baldART devices are very
forgiving in clock variations. The baud rate régids a read-write register, and
baud rate can be dynamically changed by writing\a baud rate count into the baud
rate register.

81

_ kkkkkkkkkkkkkkkkkkkkkkkkkhkhkhhkhkhhhhhhhkhhkhkkkkkik *kkkkkkkkk

- * UART Serial Interface .

- *== ==== ====%*
-- * Project: FG in PROASIC *

-- * File: uart.vhd *

-- * Author: Chien-Chia Wu *

-- * Description: UART *

-—* *

-- * Hierarchy:parent; *

- * child : *

-—* *

-- * Revision History: *

--* Date By Who Modification *

--*02/13/03 Chien-Chia Wu Reference uart statem entst *
--*02/14/03 Chien-Chia Wu (1)Copy from bpchip, *

- * (2)Modify as 32-bits . *

- * (3)Swap the ctsand rts . *

--*02/29/12 Chen-Hanson Ting Back to eP16 *
_o kkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkx *kkkkkkkkk
library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_misc.all;
use ieee.std_logic_unsigned.all;

entity uart is

port(
-- input
clk_i: in std_logic;
rst_i: in std_logic;
ce_i in std_logic;
read i in std_logic;
write_i: in std_logic;
addr_i: in std_logic_vector(1 downto 0);
data_i: in std_logic_vector(15 downto 0);
-- output
data_o: out std_logic_vector(15 downto 0);

rx_empty_o:out std_logic;
rx_irg_o: out std_logic;
tx_irg_o: out std_logic;

-- external interface

rxd_i: in std_logic;
txd_o: out std_logic;
cts i in std_logic;
rts_o: out std_logic
);
end uart;

82

Internal Signals

Following are the internal signals in the UART mtzdu

baudrate reg

Baudrate register

hw_xonoff_ff Hardware xon/xoff flag
tx_shift_reg Transmitter shift register
tx_shift_en Transmitter shift enable
tx_en Transmitter enable

tx_rq Transmitter request
tx_counter Transmitter clock counter
tx_bitcnt Transmitter bit counter
rx_shift_reg Receiver shift register

rx_buffer_reg

Receiver buffer register

rxb_full

Receiver buffer full flag

rx_full Receiver full flag

rx_en Receiver enable
rx_counter Receiver clock counter
rx_bitcent Receiver bit counter

rxd_ff Receiver data flag

rs_o Ready to send output flag
rx_empty o Receiver empty output flag

Read UART Registers

uart_register_file_read is an asynchronous protssahich the eP16 CPU reads the
UART registers at any time. When read_i=1 and=E_the register selected by
addr_1 puts its contents on the data_o bus foC#id to read.

When addr_i =0, data_o returns the baud rate daauht baud rate register. When
the master clock rate is 50 MHz and the baud 145,200 baud, the baud rate count
is 431.

When addr_i=1, data_o returns transmitter stathgrevbit 8 shows Transmitter
Ready state.

When addr_i=2, data_o returns receiver status, evbiei8 shows Receiver Ready,
and bit 0 shows flow control state.

When addr_i=3, data_o returns the contents ofdbeiver buffer, where bits 0-7
show the last character just received.

83

architecture behavioral of uart is
signal baudrate_reg: std_logic_vector(15 downto 0)
signal hw_xonoff _ff: std_logic;

signal tx_shift reg: std_logic_vector(10 downto 0)
signal tx_shift_en: std_logic;

signal tx_en: std_logic;

signal tx_rq: std_logic;

signal tx_counter: std_logic_vector(15 downto 0);
signal tx_bitcnt: std_logic_vector(3 downto 0);

signal rx_shift reg: std_logic_vector(7 downto 0);
signal rx_buffer_reg: std_logic_vector(7 downto 0)

signal rxb_full: std_logic;
signal rx_full: std_logic;
signal rx_en: std_logic;
signal rx_counter: std_logic_vector(15 downto 0);
signal rx_bitent: std_logic_vector(3 downto 0);
signal rxd_ff: std_logic;

begin

rts_o <= hw_xonoff_ff and (not(rx_full));
rx_empty_o <= rx_full nor rxb_full;

_ kkkkkkkkkkkkkkkkkkkkkkkkkhkhkhkkhhhhhhhkhhkhkkkkkkx

- Uart Register Circuit for Read
_ kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkk
uart_register_file_read:
process(read_i, ce_i, addr_i, baudrate_reg, tx_en
hw_xonoff_ff, rxb_full, rx_buffer_req)
begin
if (read_i='1"' and ce_i='1") then
case addr_iis
when "00" => data_o <= baudrate_reg;
when "01" =>data o0<= --read TX ready flag
"0000000" &

((not tx_en)and(cts_i or(not hw_xonoff_ff)))

& "00000000";
when "10" => data_o <= --only cleared by rxb re
"0000000" & rxb_full &
"0000000" & hw_xonoff_ff;
when others => data_o <= -- read&clear rxb_full f
"00000000" & rx_buffer_reg;
end case;
else
data_o <= (others=>'1");
end if;
end process uart_register_file_read;

*kkkkkkk

*kkkkkkk

, Cts_1,

ad

84

Write UART Registers

uart_register_file write is a synchronous procedsch writes new data into the
UART registers.

When the eP16 is in the reset state, rst_i=1 assas the UART to be reset. Inthe
reset state, the UART initializes the baud ratéstegto Ox1AF (decimal 431), and
sets the baud rate to 115,200 baud when the n@stéris 50 MHz. In the
meantime, flags tx_shift_reg, tx_rq, and hw_xonfbfare all cleared to O.

Once the eP16 is in its running state, the UARpaads to write commands from the
CPU on the rising edge of clock clk_i when writel end ce_i=1.

When tx_en=0, the UART is not actively transmitteagharacter.

Writing with addr_i=0, new data is written into thaud rate register and the new
baud rate will take effect immediately. One shdw#dcareful in changing the baud
rate, because the external device connecting td&RT port should be set up so it
responds to the new baud rate correctly.

Writing with addr_i=1, new data is written into ttransmitter shift register,
tx_shift_reg. The lower 8 bits of data is a chtgato be transmitted. Transmit
request, tx_rq, is also set to start transmitting tharacter.

Writing with addr_i=2, the flow control bit can lohanged by bit O of the written
data.

When tx_en is not zero, the UART is transmittingharacter.
If tx_shift_en=1, the rising edge of clk_i causles tharacter in the transmitter shift

register, tx_shift_reg, to be shifted right by 1. biThe lowest bit is shifted out to
txd_o.

85

_o kkx

-- Uart Register File Process for Write
_o FThkkkkkkkkkhkkkkhhkkhhkkkhhkhhhhkhhhhhhkhhhkhhhkhiixk
uart_register_file_write : process (rst_i, clk_i)
begin
if (rst_i="1") then
baudrate_reg<="0000000110101111";
-- 50 MHz, 115.2Kbps
tx_shift_reg <= (others=>'0";
tx_rgq <='0}
hw_xonoff ff <="0",;
elsif (clk_i'event and clk_i="1") then
if (tx_en="0") then
if (write_i='1" and ce_i="1") then
case addr _iis
when "00"=>baudrate_reg<=data_i;
when "01"=>
tx_shift_reg<="11"&data_i(7 downto 0)&'0’;
tx_rg<='1"%
when "10"=>hw_xonoff_ff<=data_i(0);--flow Contro
when others => null;
end case;
end if;
else
tx_rq <='0,
if (tx_shift_en='1") then
tx_shift_reg<="1'&tx_shift_reg(10 downto 1);
end if;
end if;
end if;
end process uart_register_file_write;

*kkkkkkkkk

*kkkkkkkkk

86

Transmit Process
The transmitter in the UART is running in a synaifouos process, uart_tx_core.

On booting up, rst_i is set, and all registersm WART transmitter are cleared to
zero. Only txd_o is pulled up, raising the UARTpmut line TX to high, which is the
rest state of the UART output line.

When transmit request, tx_rq, is set, a charastir tix_shift_reg, ready to be
transmitted. tx_counter is initialized by copyitng baud rate count from
baudrate_reg, and the transmit bit counter, txnhiis initialized to 11 for 1 start bit,
8 data bits and 2 stop bits. tx_en is now setax the transmitting procedure.

As tx_en is set, every rising edge of the mastwrkctauses tx_counter to be
decremented. When tx_counter is 0, one bit inh¥t seq is shifted out to txd_o,
by setting tx_shift_en, which causes the uart_tegifile_write process to do the
shifting. In the meantime, tx_bitcnt is decremerad tx_counter is re-initialized
to baudrate_reg. This sequence is repeated 1% torghift out all data bits in
tx_shift_reg.

After all 11 bits in tx_shift_reg are shifted otx, en is cleared to stop the

transmitting procedure. An interrupt request isvated by setting tx_irq_o. txd_o
is again set to put the UART to its resting state.

87

_o kkx *kkkkkkkkk

-- Uart TX Core Process

_o FThkkkkkkkkkhkkkkhhkkhhkkkhhkhhhhkhhhhhhkhhhkhhhkhiixk kkkkkhkkkkk
uart_tx_core : process (rst_i, clk_i)
begin

if (rst_i="1") then

tx_counter <= (others=>'0");

tx_bitcnt <= (others=>'0");

txd_o<="1"

tx_en <="0}

tx_shift en <="'0";

tx_irg_o <=0}

elsif (clk_i'event and clk_i="1") then

tx_shift_en <=0,

tx_irg_o <="0}

if (tx_en="0") and (tx_rg="1") and
(cts_i="1" or hw_xonoff_ff="0") then
tx_counter <= baudrate_reg;
tx_bitent <="1011";
tx_en<="1";

elsif (tx_en='1") then

if (tx_counter/="0000000000000000")
then tx_counter <= tx_counter-1;

elsif (tx_bitcnt/="0000") then
tx_bitcnt <= tx_bitent-1;
txd_o <= tx_shift_reg(0);
tx_shift en <="1";
tx_counter <= baudrate_reg;

else
txd_o<="1" -- mark-high=stop-bit
tx_irg_o <='1"; -- transmitter empty
tx_en<='0" -- closed
end if;
end if;
end if;

end process uart_tx_core;

88

Receive Process
The receiver in the UART is running in a synchrosipuocess, uart_rx_core.
On booting up, rst_i is set, and all registershm WART receiver are cleared to zero.

When the receiver receives a complete charactefylix1l. On the rising edge of
the master clock, the character received in rxt gieif) is copied to rx_buffer_register,
which can be sent to the eP16 when eP16 readsffer lnegister at location OXFF03.

rxb_full flag is set only when rx_shift_reg is cegdiinto rx_buffer_reg. It otherwise
is always cleared to 0.

On the rising edge of every master clock, the keranput line, rxd_i, is always
sampled and its state is stored into rx_ff. rxd_rnormally high when the UART is
resting. When rxd_i is lowered to O, rx_ff is dled and it indicates that a start bit is
detected and a character is coming. Activitiethennext page of VHDL code cause
this character to be received.

When the receiver is resting, rx_en=0. When 4 btais detected and rx_ff is
cleared, the receiver is initialized to prepareeingag a new character. rx_counter is
first initialized to half of the baud rate countbaudrate_reg, so that the receiver line,
rxd_i, will be sampled in the middle of every lBteived. rx_en is set, and rx_bitcnt
is initialized to 9, for 1 start bit and 8 datasbit

When rx_en is set, every rising edge of the madtek decrements rx_counter until
it is zero.

When rx_counter=0, rxd_ff is shifted into rx_shrg, rx_bitcnt is decremented, and
rx_counter is reinitialized to the baud rate caarttaudrate_reg.

When rx_bitcnt is decremented to zero, a completéeacter is received in
rx_shift_reg. rx_full is set so that the charaatenx_shift_reg will be copied into
rx_buffer_reg, and be made available to the eP16.irq_o is set to request an
interrupt, and rx_en is cleared to receive the obatacter.

89

_o kkx *kkkkkkkkk

-- Uart RX Core Process
_o FThkkkkkkkkkhkkkkhhkkhhkkkhhkhhhhkhhhhhhkhhhkhhhkhiixk *kkkkkkkkk
uart_rx_core : process (rst_i, clk_i)
begin
if (rst_i="1") then
rx_full <="0"
rxb_full <="0"
rx_irg_o <='0,
rx_buffer_reg <= (others=>'0");
rx_counter <= (others=>'0");
rx_bitcnt <= (others=>'0");
rx_en <='0"
rx_shift_reg <= (others=>'0";
rxd_ff <="0";
elsif (clk_i'event and clk_i='1") then
rx_irg_o <="'0,
rxd_ff <=rxd_i;
if (rx_full="1") then
if (rxb_full='0") or
(read_i='1"and ce_i="1"and addr_i="11") then
rx_buffer_reg <= rx_shift_reg;

rxb_full <="1"
rx_full <="0"

end if;

else

if (read_i='1"and ce_i="1" and addr_i="11") then
rxb_full <="0",

end if;

if (rx_en='0") and (rxd_ff='0") then
rx_counter <="'0"' & baudrate_reg(15 downto 1);
rx_bitcnt <="1001";
rx_en<="1%
elsif (rx_en="1") then
if(rx_counter/="0000000000000000")
then -- bit-T-counting
rx_counter <= rx_counter-1;
elsif (rx_bitcnt/="0000") then
-- last bit has been received
rx_bitcnt <= rx_bitcnt-1;
rx_shift_reg<=rxd_ff&rx_shift_reg(7 downto 1);
rx_counter <= baudrate_reg;

else
rx_irg_o <="1";--flag for generate pulse
rx_full <="1"
rx_en <="'0;

end if;

end if;
end if;
end if;

end process uart_rx_core;
end behavioral;

90

55 GPIO Module

The VHDL code of the GPIO module is in the gpio.\itel

A general purpose parallel I/O port is most usefukal-time applications to interface
to a wide range of external devices. In the eR&6m, such a GPIO port is
included. Itis designed as a 16-bit bidirectigoalallel port, but the user can
configure it to suit any purpose. It is declareceatity in the gpio.vhd file.

Port signals of the GPIO module are defined inGIREO entity as follows:

Port Signal | Function

clr Master reset

clk Master clock

write Write enable

read Read enable

ce GPIO chip select
addr Register address
data in Data input from CPU
gpio_in GPIO input

mem_conf_g Bit0 memory select: 0-ROM; RAM
Bitl CPU reset

data_out Data output to CPU
gpio_out Data output to GPIO output
gpio_dir Direction select of GP1O

91

_o kkx

- * General Purpose Input Output Module

P y—— —_—

*kkkkkkkkk

--* Project: FG in PROASIC
-- * File: gpio.vhd
-- * Author: Chien-Chia Wu

-- * Description:

*

General Purpose Input Output blo
-- * Hierarchy:parent;
- * child :

*

-- * Revision History:

--*03/02/03 Chien-Chia Wu Created.
--*02/29/12 Chen-Hanson Ting Back to eP16
_o kkkkkkkkkkkkkkkkkkhkkkkhkkkkkkkkkkkkkkkkkkkkkkkkx
library ieee;

use ieee.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_misc.all;

use IEEE.std_logic_unsigned.all;

entity gpio is
port(

-- input port
clr: in std_logic;
clk: in std_logic;
write: in std_logic;
read: in std_logic;
ce: in std_logic;
addr: in std_logic_vector(1 downto 0);
data_in: in std_logic_vector(15 downto 0);
gpio_in: in std_logic_vector(15 downto 0);
-- output port

);

data_out: out
gpio_out: out
gpio_dir: out

end gpio;

std_logic_vector(15 downto 0);
std_logic_vector(15 downto 0);
std_logic_vector(15 downto 0)

ckr

*kkkkkkkkk

—_————%

*

92

Registers in the GPIO module, their address anctifums are as follows:

Address| Register Function

OxFF04 | gpio_out When written, send data to gpio port

OxFFO5 | gpio_dir_reg| Select port pin direction: O-input; 1-output

OxFFO06 | gpio_in Read gpio port

As GPIO is a module in the eP16 system, it is nohected directly to 1/O pins on
the eP16 system package. Therefore, gpio_in, gptoand gpio_dir signals are all
brought out as ports in the GPIO module. Theseatsgare used in the eP16_chip
top level module to drive I/O pins.

In the eP16, a GPIO port is a 16-bit device. fh6diare brought out to pins on the
LatticeXP2-5E-TN144C chip to drive 8 LEDs and tonttor 8 pushbutton switches.

Reading GPIO registers is an asynchronous prosesisoavn in the
gpio_register_file_read process. Bits in the ggioregister define pins as input or
output. A bit set in gpio_dir makes the correspoggin an output pin. A bit
cleared in gpio_dir makes the corresponding pimpat pin. Reading the gpio_in
register obtains the status of the input pins. tiAgithe gpio_out register sends data
to the output pins.

Writing the GPIO registers is done using a syncbusrprocess,
gpio_register_file_write.

On reset, rst_i=1, and all GPIO registers are ekb&w zero.
When running, on the rising edge of clk_i, if ceaird write=1, data from the CPU
on the data_i bus are written into the registezced by addr_i. Writing to the

gpio_reqg register send data to output pins. \Wgitmthe gpio_dir register defines
the input and output pins.

93

architecture behavioral of gpio is
signal gpio_reg: std_logic_vector(15 downto 0);
signal gpio_dir_reg:std_logic_vector(15 downto 0);
begin
gpio_out <= gpio_reg;
gpio_dir <= gpio_dir_reg;

_o kkkx

- GPIO Register Circuit for Read
_o Fhkkkkkkkkkkkkkkhkkhkkkhhkhhhhkhhhhhhkhhhhhikhiixk
gpio_register_file_read:
process(read, ce, addr, gpio_reg, gpio_dir_reg,gpi
begin
if (read="1" and ce='1") then
case addr is
when "00" =>
data_out<=gpio_reg;
when "01" =>
data_out<=gpio_dir_reg;
when others=>
data_out<=gpio_in;
end case;
else
data_out <= (others=>'1");
end if;
end process gpio_register_file_read;

_o Fhkkkkkkkkkkkkkkkkhkhkhhhhhhkhhkhkkkkkkhkhkhkkhkkkkkkkx

-- GPIO Register Circuit for Write
_o FThkkkkkkkkkkkkkhhkkhhkkkkhhkhhhhkhhhhhhkhhhkhhhkhiixk
gpio_register_file_write:
process(clr, clk)
begin
if (clr="1") then
gpio_reg <= (others=>'0";
gpio_dir_reg <= (others=>'0";
elsif (clk'event and clk="1") then
if (write="1" and ce="1") then
case addr is
when "01" => gpio_dir_reg <= data_in(15 downto O
when others => gpio_reg <= data_in(15 downto 0);
end case;
end if;
end if;
end process gpio_register_file_write;
end behavioral;

*kkkkkkkkk

*kkkkkkkkk

0_in)

*kkkkkkkkk

*kkkkkkkkk

94

56 Remarks

Here | had just shown you the design of a comdléteit microcontroller in VHDL.
What | want to convey is the idea that CPU is nfficdlt. It can be very simple.
It was made very complicated because CPU desigindrsot fully understand the
fundamental components necessary for a CPU toitmaind thus made designs
unnecessarily complicated.

| cannot overemphasis the fact that the eP16 CRIdutas all instructions in a single
clock cycle. All prior CPU designs required maiyc& cycles to execute an
instruction. Designers tried very hard to covethip deficiency with pipelining and
other techniques, and made the CPU even more ocatgyi.

This design of eP16 microcontroller is only a stayipoint for you to design and
build your own microcontroller. You should congiéggtending this design in the
following directions:

For immediate applications, you should consideiragldew I/O modules to handle
specific tasks in your applications. | gave yadBRIO and a UART as examples.
You can incorporate existing /0O modules into ydasign. If you understand your
tasks, it is probably easier to design your ownrti@ules than pullinglibrary

module$ off the shelf.

For long term development, you should considerragldew instructions to the CPU
core. |am sure you feel constrained by the verglkinstruction set | put into the
eP16 CPU. There are spaces for 5 more instruciiotn® current eP16 architecture.
If you are ambitious, why not encode instructiamgytes? Then, you can have 256
instructions. Now, you are at a point to implema&dva Virtual Machine with byte
codes.

The possibility is only limited by your imagination

How about software? If one changed hardware desilga's going to provide
software to make use of improvments?

As President Obama saidYes, we can!

Read the next chapter.

95

Chapter 6. Metacompilation of the eP16

In 1990, | hosted the monthly meetings of the Silivalley Forth Interest Group.
The morning sessions were generally for FORML, rdtodification Laboratory,
where we discussed how to enhance FORTH languabe &tme. We were
brain-storming what FORTH would be like in the neghtury. Two different
directions were debated. Tom Zimmer and Andrew Blen wanted a FORTH for
Windows, and developed Win32Forth to take advantdglee popular Windows
platform. It became a huge and complicated systefill Muench and | wanted a
simple FORTH portable to all new and exciting mamotrollers coming in the future.
We developed eForth and it was implemented on Btestifferent microcontrollers
and microcontrollers by many volunteers.

In the meantime, | also worked with Chuck Moorehtsminext FORTH chip, the
MuP21. It was targeted for an 1.2 micron CMOS psscavailable from Orbit
Semiconductor on shared 5 inch wafers. Dies wehe224 mm, and it forced Chuck
to strip bare his CPU. He reduced instruction23pand fit a 20-bit microcontroller
on this small die, with an NTSC video coprocessml a DRAM memory coprocessor.
It was a marvelous design, but we ran out of mdredgre it was perfected.

| compared the designs of eForth and the MuP21fantl great similarity, in spite

of the completely different origins of these twesdms. eForth is a software design
and the MuP21 is a hardware design. However, oty were based on primitive
instruction sets with about 30 instructions. Mamstructions were identical in these
two instruction sets. Those instructions whichewdifferent, were different because
of hardware constraints. | was able to implemé&iatréh on the MuP21, and it was a
very pleasant system, a real FORTH language oal&@RTH CPU.

After the MuP21, Chuck and | went our separate way$e founded iTV, Intellesys,
and Green Arrays, and built multiprocessor chipgedaon the MuP21 core design. |
discovered FPGASs, and developed scalable P-seregsaantrollers based on the
same core, implementing 16-, 24- and 32-bit vessimfithe P-microcontrollers.

A young fellow in Taiwan, Mr. Cheah-shen Yap, pdréd&orth to Windows to become
the weForth system. He further enhanced it arehseld it as the F# system. These
are the simplest FORTH implementations for Winddwg,they can call all Windows
APIs to build applications running on a PC. | ubeth to write metacompilers for
embedded systems. However, for the eP16, | peefemeForth, because it has a
simpler user interface to load applications. Wivefrorth.exe is executed on
Windows, it loads a start.f file, which loads innMilows utilities and application files.
F# has a more sophisticated graphical user intertawd gives the user better ways to
organize software projects. For an eP16 metacempibwever, weForth is more
than enough, and it is easier to document andptaex

The complete command set of eForth is shown in AgpeB for your reference.

96

My goal is to build a FORTH microcontroller basadtbe eP16 CPU on an FPGA
chip, the LatticeXP2-5E, hosted on a LatticeXP2viax2 Development Kit. FPGA
synthesis and programming tools are provided irDiaenond IDE system supplied
by Lattice. The FORTH system on the eP16 is amteRystem, and | build this
eForth target system in weForth.

In FORTH terminology, a metacompiler is a FORTHgyeon which produces an
image of program memory, as a dictionary, whictogied into the memory of a
target microcontroller. When the target microcolr powers up, a FORTH
system is booted up to interact with its user.

| believe the best way to explain this eForth gysiethrough the source code of the
eForth metacompiler in weForth that produces tissesn. | like to take the same
approach in presenting the eP16 hardware by conimgeon its VHDL source files.

| will put eForth source code on left pages, anthim@ntary on opposing right pages.
Going through source code almost line by line,pdthat | can make clear the
process of producing a target eP16system, as weallake clear the code and other
relevant information that go into program memoryhe eP16.

Before going through source code files in the diorétacompiler, | will first show

you the metacompiling process in weForth, and howRil6 target image is
generated. In addition, | will show you a simutatoweForth, which simulates the
eP16 eForth as an eP16 running on a Brevia DevenpKit. This way you can try
running an interactive FORTH system on a simulafeti6é without the Brevia Kit.

It is a good way to learn how FORTH works. Youd&&avo FORTH systems to
experiment with: weForth as a Windows applicatem) eP16 eForth as an embedded
application on the Brevia2 Kit.

6.1 Metacompiling the eP16

All source code of the eP16 eForth system is coathin the eP16r.zip file.
weForth and its Windows utilities are also includhede.

Unzip file eP16r.zip and put all the files intodder named “eP16r”. Start weForth
by double clicking weforth2.exe in the eP16r foldes shown in Figure 29.

weForth opens a console window, loads the eFortacoepiler and generates a new
eP16 target system.

A memory image of the eP16 eForth target systestoi®d in file mem.mif. While
building this system, weForth prints out a largenber of messages on its console
window.

The console window at the end of the metacompilafiocess is shown in Figure
30.:

Scroll the console window back to its beginningy ou can see that weForth loads

several system files, win32.f, api.f, and ui.fbiing in the necessary Windows APIs,
as shown in Figure 31.

97

BER ®EE SR FO8SWw IBED HE® i
= |
Q8- Q [F Pu= |zux|[[-
AT |59 Dirobym-kinglep] Griep L6r v Bz
T X EH Foln | 48R {5 EA
& edtype ~ |#)ani lEB FHE J006/10/26 _+4F 08:...
(5 MANDEL — B 4KBE FHE 200641026 EF 08:...
£ Mandel float e 121 KB FERIE= 2006/10:26 4 08:...
£33 Mandel float mouse [#]win2 2KB FHR% 2006/10426 £5F 08:...
[#]2p32_chip 9KE VHD 83 2010134 F4F 02:24
|8 stot IKE FH#E 2012/2/28 T4 0601
%] 45M16R 41KB FHXE 201202128 F4F 06:47
[B]3IM16R TKE FH#E 2012/2/28 F4F 0725
|#|MET4IER IKB F®E 20124228 F4F 07:32
| EF16R 14KB Fia% 2012¢2/28 T4 07:34
|#] vartl6 TKE VHD % 2012/2/28 FF 10:25
|#] gpiol® 3IKB VHD #3F 2012/2/28 T4 1028
|3 ram_mermory 86 KB VHD % 2012/2/28 F4F 10:35
|2]epl6 13KE VHD #83% 2012/2/28 T4 1052
|#]KERNI1ER IKB FHXE 201202129 4 1149
) eforthsutre [#]ep16_chip OKB VHD#E 2012/3/23 TFF 04.03
=) eplfic mein it 0KE MIF#E 2012432 T4 10:34
=3 eplfr
0 eplfix
=) ep32
.;1 jﬂ atara oot
< | »

Figure29. epl6r Project Folder

I WeForth 2.01
File Edit Tools Help

Tools #
dm+ 682 vreDef dm+DUMHP 694 vreDef DUHP

>HAME 6A? reDef >HAME.ID 6BE vreDef .ID

SEE 6CB reDef SEEWORDS oG6EY reDef WORDS .5 6F7 reDef .5

file download and upload

READ 715 DK 728 SEHD 747 FORGET 763 reDef FORGET

Hardware reset

g0a

DIAGHDSE 886 reDef DIAGHOSE

coLDd 861 reDef COLD

Structures

OFFSET 87A BEGIH 888 reDef BEGINTHEM 886 reDef THEHMFOR 88E reDef
FOR

MEXT 897 reDef NEXTUHNTIL B8A8 reDef UNTILAGAIN 8A? reDef AGAINIF 8B1
reDef IF

AHEAD 8BA reDef AHEADREPEAT 8Ch reDef REPEATAFT 8CA reDef AFTELSE
803 reDef ELSEWHEN 8DC WHILE 8EZ2 reDef WHILE

ABORT" 8EA reDef ABORT"S" 8F4 reDef $"." 8FE reDef .

doUAR 9685 reDef doVUARCODE 98A reDef CODECREATE 913 reDef
CREATEUARIABLE 91F vreDef UARIABLECOHSTAHT 92A reDef COHSTANTDOES 934

a
24
ok
Loading sim16R.f reDef TO reDef next reDef S reDef reset reDef P ok
ok
ok

Figure30. Bootup ep16 Metacompiler

98

I WeForth 2.01
File Edit Tool: Help

eForthiK ~
weForth vw2.81

Loading Loading win32.f ok

Loading api.f ok

Loading ui.f ok

Loading metai16R.f Loading asm16R.f reDef IMMEDIATE reDef hi reDef #
reDef next reDef HEXT reDef BEGIN reDef UHTIL reDef IF reDef THEN reDef
ELSE reDef WHILE reDef REPEAT reDef AGAIN reDef AFT reDef FOR ok

Loading kern16R._f
system variables reDef HLD reDef SPAH reDef >IN reDef HTIB reDef BASE
reDef CONTEXT reDef CP reDef LAST reDef ‘EUAL reDef tmp
macro words

reDef EXIT reDef EXECUTE reDef ?* reDef @ reDef R> reDef RE@ reDef >R reDef
DUP reDef SWAP reDef DROP veDef 2DROP reDef + reDef HOT vreDef AND reDef
XOR reDef OUER reDef MEGATE reDef 1- reDef 1+ reDef BL reDef +! reDef -
reDef OR reDef ROT reDef ZDUF reDef 2% reDef 2@ reDef COUNHT
kernel words |

1088
DOUAR 184 A< 188 reDef 6<UM+ 111 reDef UH+?DUP 11B reDef ?DUP
DHEGATE 124 vreDef DHEGATEABS 12F reDef ABS= 137 reDef =
B> 148 >B 14B ok

Loading ef16R.f

Chararter 10
?KEY 15A reDef ?PHKEYKEY 168 reDef KEYEMIT 16A reDef EMIT
Common functions
U< 173 rebDef U<< 183 vreDef <MAX 193 vreDef HAXMIN 19E reDef
MINWITHIN 1AC reDef WITHIH
Divide
UM/HMOD 1B? reDef UM/HMOD/SMOD A1C3 veDef SMODMOD 1D% vreDef MODS 1DO W

Figure31. Beginning of Metacompilation

The next file loaded is metal6r.f, which is the @ Rietacompiler. It first loads
ASM16R.f to bring in an eP16 assembler. It prousa list of command names
followed by a “reDef” message. These commandsiafimed in the eP16 assembler,
preparing to assemble commands in the eP16 kernel.

The next file loaded is KERN16R.f, which first defs many macro commands.
Then it starts building the eP16 kernel startintaeget memory location $100.
There you can see names of target commands follbweldeir code field addresses.
They form a symbol table, which you can use to lopknames and addresses of
target commands.

After the kernel is built, the metacompiler load<f16r.f, which compiles the
complete eForth target system, and writes its FORIiCHonary out into a file
mem.mif. This file is used to initialize the RAMmemory array in the
ram_memory.vhd file, and to synthesize the eP16aoontroller in the FPGA chip
on the Brevia2 Kit as mentioned in the last section

After the eP16 target system is built, the metad@nfpwads sim16r.f, which is an
eP16 simulator. This simulator executes eP16uostns compiled by the
metacompiler, and faithfully simulates the eP1pgchistruction by instruction.

Simulating the eP16

99

Once the sim16r.f simulator is loaded, type the mamd:
HELP
and a list of simulator commands appear, as shovangure 32.

I WeForth 2 01

File Edit Tool: Help

Structures ~
OFFSET 8&7A BEGIHN 8§88 reDef BEGINTHEM 886 reDef THEWFOR 8BE reDef

FOR

NEXT 897 reDef HEXTUHTIL B8AA reDef UNTILAGAIN 8A%? reDef AGAINIF 8B1
reDef IF

AHEAD S8BA vreDef AHEADREPEAT 8C4 reDef REPEATAFT 8CA reDef AFTELSE
803 reDef ELSEWHEN 8DC WHILE 8E2 reDef WHILE

ABORT" B8EA reDef ABORT"S$" 8F4% reDef $"." 8FE reDef .“

doUAR 985 veDef doUARCODE 98A reDef CODECREATE 913 reDef
CREATEVARIABLE 91F reDef UARIABLECOHSTAHT 92A reDef CONSTAHNTDOES 934

a
2h
ok
Loading sim16R.f reDef TO reDef next reDef 5 reDef reset reDef P ok
ok
ok
HELP
eP16 Simulator, copyright eForth Group, 2882
C: execute next cycle
$: show all registers
D: display next 8 words
addr M: display 128 words from addr
addr P: start execution at addr
addr G: run and stop at addr
RUN: execute, one key per cycle
ok
| v

Figure32. HELP Directionsof eP16 Simulator

Type this command:
-1G

and the simulator boots up the eP16 eForth systehpants out its sign-on message:
eP16 v3.01

This is what you see next in Figure 33.
Now you can exercise eP16 eForth by typing in FOR®hhmands.
Figure 34 shows results when you type command:

WORDS

If you care to count them, there are 168 commandBhese commands are
documented in Appendix B.

100

Il WeForth 2.01
File Edit Tools Help

a s
24
ok
Loading siml1é6R.f reDef TO reDef next reDef S reDef reset reDef P ok
ok
ok
HELP
eP16 Simulator, copyright eForth Group, 2882
C: execute next cycle
S: show all registers
D: display next 8 words
addr H: display 128 words from addr
addr P: start execution at addr
addr G: run and stop at addr
RUN: execute, one key per cycle
ok
ok
ok
-1 6
Press any key to stop.

eP16 vw3.61
0K

DK

Figure33. eP16in Simulation

I WeForth 2.01

File Edit Tool: Help

Press any key to stop. ~
eP16 v3.m

0K

0K
WORDS

IHUERT X0OR AHD DROF DUP COUNT 2@ 2t 2DUP HROT OR - +% BL 1+
1- HEGATE HOT + ZDROP OUER SWAP >R RE R> @ t ESECUTE ESRIT
IMMEDIATE { % .{ DOES GCONSTAMT VUARIABLE CREATE CODE . 3™

ABORT"™ WHILE WHEN ELSE AFT REPEAT AHEAD IF AGAIN UNTIL HEXT FOR
THEH BEGIN OFFSET COLD DIAGHOSE FORGET SEHD OK READ .S WORDS

SEE .ID >NAME DUMF dm+ :] ; OUERT $COMPILE $,n 7UNIQUE (CALL)
$," LITERAL COMPILE [COMPILE] , ALLOT ° QUIT EVAL .OK [
$INTERPRET ERROR abort” ABORT QUERY EXPECT accept KTAP TAP “H
HAME? find SAME? MNAME> WORD TOKEM PARSE (parse) ? . U. U.R R

-] %"| do§ CR TYPE SPACES CHARS SPACE HUMBER? DIGIT? DECIMAL
HEX str #> SIGHN #S5 # HOLD <# EXTRACT DIGIT UNPACKS 7/ PACKS
FILL CHMOUE G@EXECUTE TIE PAD HERE >CHAR *f =/MOD k= 2= UMx H/MOD
/ MOD /MOD UMSHODD WITHIH HMIN HMAX < U< EMIT KEY <TKEY >B B> =
ABS DHEGATE ?DUP UM+ 8< DOUVAR OK

0K

Figure34. WORDSIin eP16

101

Here are more eForth commands you can type intavdfeorth console to test the
eForth system:

HEX 0 80 DUMP

SEE WORDS

HERE .

12+.

:TEST112345;

TEST1

S

: TEST2 10 FOR R@ . NEXT ;
TEST2

: TEST3IF1ELSE 2 THEN . ;
0 TEST3

1 TEST3

: TEST4 CR .” HELLO, WORLD!";
TEST4

After these tests, the weForth console looks likats shown in Figure 35.

- e——— AEE

File Edit Tools Help

12+ . 3 0K
D TEST1 1 2 3 45 ; DK
TEST1 OK

25832120 43 6D 65 53 6C 4D 68 74 72 6F 46 65 D O 0 B 8 8 @ 8 5F 2
5AB 30 582 6F7 5 0

0K

: TEST2 18 FOR RE . HEXT ; OK

TEST2 18 FEDCBA98 7654321 80K
: TEST3 IF 1 ELSE 2 THEH . ; OK

8 TEST3 2 OK

1 TEZT3 1 DK

: TEST4 CR ." HELLO, WORLD*" ; DK

TESTY

HELLO, WORLD* OK

Figure35. Testsof eP16 Simulator

102

6.2 TheeP16 Metacompiler
The eP16 metacompiler is contained in file met&16r.

“Metacompiler” is a term used by a FORTH programioetescribe the process of
building a new FORTH system on an existing FORTBtesy). The new FORTH
system may run on the same platform as the old FO&/Etem. It may be targeted
to a new platform, or to a new CPU. The new FORYBtem may share a large
portion of FORTH code with the old system, hene@etdrm “metacompilation”. In
a sense, the metacompiler is very similar to a entignal cross assembler/compiler.

start.f is similar to a MAKE file in UNIX. FORTHamnmands in this file are
executed by the weForth system upon startup. attdon a metacompiler in
metal6r.f, which compiles a target eForth systentife eP16. It produces a
memory image file, which will be used to initialimeemory blocks by IPexpress in
the Lattice Diamond system to program the Lattic2E FPGA chip. metal6r.f
contains the following commands to load source domt@ many other files:

ASM16R.F eP16 assembler

KERN16R.F Primitive commands in eP16 eForth
eflor.F Compound commands in eP16 eForth
siml6r.F eP16 simulator

We start here to discuss metacompiler commandsimetal6r.f file. All other
files referred to in this file will be discussedthreir separate sections.

debugging?| A variable containing a switch to turn break poiotsand off. Wher
debugging? is set to -1, compilation will stop dimel parameter stack
is dumped when a “cr” command is executed. SprigKicr”
commands in the source code file allows you to wéte progress of
metacompilation and even stops it when necessary.

.head Display name of a command that is about twobwiled. It is used
to display a symbol table. You can look up theecheld address of
any command in this table.

cr Stop metacompilation if debugging? is -1, anchgyparameter stack
If you press carriage return, metacompilation isredg. Otherwise,
metacompilation continues. Itis a NOP if debug@iis O.

During metacompilation, FORTH commands will be fete so that they compile
subroutine call instructions or assemble other nm&cimstructions into the target
memory image. There are numerous occasions whereriginal behavior of a
FORTH command must be exercised. To preserveripmal behavior of a FORTH
command, it is assigned a different name. Theadley a command is redefined, we
can still exercise its original behavior by invogithe alternate name.

103

(metal6o.f for weforth, 06sep02cht)
(eP16v3.01)
(metal6R.f for Brevia2, 29feb12cht)

HEX
VARIABLE debugging?

. .head (addr -- addr)
>IN @ 20 WORD COUNT TYPE SPACE >IN!
DUP . SPACE

:crCR
debugging? @
IF .S KEY OD = ABORT" DONE"
THEN

: forth_'";

: forth_dup DUP ;

. forth_drop DROP ;

: forth_over OVER ;

. forth_swap SWAP ;
:forth @ @ ;

:forth _!'1;

: forth_and AND ;
:forth + +;

. forth_- -;

: forth_word WORD ;

. forth_words WORDS ;
:forth_.s.S;

:CRRecr;

: forth_.([COMPILE] .(;
: forth_count COUNT ;

: forth_r> R>;

:-or XOR;

: >body 5 +;

: forth_forget FORGET ;

CREATE ram 8000 ALLOT
: reset ram 8000 O FILL ;
‘ram@ 2 *ram+ @ FFFF AND ;
:ram! 2 *ram + 2DUP C! 1+ SWAP FFFF AND 100/
: binary 2 BASE ! ;
: four 3 FOR DUP ram@ 5 U.R 1+ NEXT ;
: show (a) OF FOR CR DUP 6 .R SPACE
four 2 SPACES four NEXT ;
: showram 0 OB FOR show NEXT DROP ;

SWAP CI';

104

For example, “+” is a FORTH command that adds ¢ipetivo numbers on the
parameter stack in the weForth system. Then ilKERN16R.f file, a new “+”
command is defined to assemble an ADD instructiotihé target eP16 system. If
you still need to add two numbers, you must usatteenate command “forth_+" as
shown below. All the weForth commands you needstolater must be redefined as
“forth_xxx” commands. If you neglect to redefirmein, you will find that the
system behaves very strangely.

The eP16 executes program words and accessesidaégamemory range 0-1FFF.

In weForth we allocate a 32k byte memory arrayyf'tao hold the eP16 target image.
This array contains code and data to be copiedelRt®6 internal memory at O, to be
executed on the eP16 chip.

The eP16 metacompiler builds a target image for theésedPip in “ram”, a memory
array in weForth. This image eventually will beponted to the Diamond system so
that this target image will be incorporated in B¥eM_DQ module, which will be
synthesized with the eP16 core logic to be implastm the LatticeXP2-5E FPGA
chip. Diamond requires that the target image k#temrin a file conforming to its
Addressed-Hex format, which consists of a headtr avfew lines of system
information in ASCII text, and then a body contagnmemory information in
hexadecimal numbers.

In the body of mem.mif, each line of data consitan address and its contents as
hexadecimal numbers separated by a colon character.

hFile A variable holding a file handle.

CRLF Insert a carriage return and a line feed théocurrently
opened file.

open-mif-file Open a file named eP16r.mem for wgti

write-mif-line Write one line of text into currefite.

write-mif-header Write a header required by Diamonrtd current file.

“mif” is a leftover term used when | was implemegtithe eP32 for the Xilinx FPGA,
and its development system expected a memoryofitetin its mif format. FPGA
development systems from Actel and Altera also irecifferent memory file
formats. It is easy to conform to their requiretsdsy changing these xxx-mif-yyy
commands here.

105

VARIABLE hFile
CREATE CRLF-ARRAY OD C, OA C,
: CRLF

hFile @

CRLF-ARRAY 2

PAD (IpWrittenBytes)

0 (IpOverlapped)

WriteFile

IF ELSE ." write error" QUIT THEN

: open-mif-file
Z" mem.mif"
$40000000 (GENERIC_WRITE)
0 (share mode)
0 (security attribute)
2 (CREATE_ALWAYS)
$80 (FILE_ATTRIBUTE_NORMAL)
0 (hTemplateFile)
CreateFileA hFile !

: write-mif-line
PAD (IpWrittenBytes)
0 (IpOverlapped)
WriteFile
IF ELSE ." write error" QUIT THEN
CRLF

. write-mif-header
hFile @
$" #Format=AddrHex "
write-mif-line
hFile @
$" #Depth=4096 "
write-mif-line
hFile @
$" #Width=32 "
write-mif-line
hFile @
$" #AddrRadix=3 "
write-mif-line
hFile @
$" #DataRadix=3 "
write-mif-line

106

write-mif-data | Write a 4k word image of the eFoystem from memory array
“ram” to the mem.mif file.

close-mif-file Close the mem.mif file.

write-mif-file | Write a file mem.mif containing 4 Kvords of the eForth System
according to the Address-Hex format required bykprPess.

IPexpress in the Diamond FPGA IDE expects an e®fetimage in Hex-Address
format. A mem.mif file has a header containingeysinformation, and a body that
contains memory data in hexadecimal ASCII character

Write-mif-file opens an mem.mif file, writes a heaidwrites data, and then closes the
file. The mem.mif file must be copied into the éRitoject in the Diamond IDE to
be synthesized with the eP16 VHDL files, in ordebtild the eP16 system for the
LatticeXP2-5E FPGA chip.

The eP16 metacompiler continues to load the ePdghdsder in ASM16R.f, the eP16

kernel in KERN16R.f, and the eForth system in efMith the following commands:
FLOAD ASM16R.f
FLOAD KERN16R.f
FLOAD efl6r.f

The target image is complete, and can be now wrdté into mem.mif by the
write-mif-file command.

The metacompiler now loads in the simulator in Enflwith:
FLOAD sim16r.f

The eP16 eForth system can now be simulated in sleFolt is most satisfying to
see that the output of this simulator matches &xadtat is produced by the eP16
eForth system in the XP2 FPGA chip. This simul&aworking at machine
instruction level. It is much more convenientua than the Active-HDL simulator
which works at clock cycle level. Once a developtrgcle is closed in this fashion,
we have very high confidence that any software ghan source code of the eForth
system will work in the FPGA, if it first passedslinigh-level simulator.

107

: write-mif-data
0 (initial ram location)
$1000 FOR AFT
DUP ram@ IF
hFile @
OVER
<# 3A HOLD #S #>
PAD (IpWrittenBytes)
0 (IpOverlapped)
WriteFile
IF ELSE ." write error" QUIT THEN
hFile @
OVER ram@
<# #S #>
PAD (IpWrittenBytes)
0 (IpOverlapped)
WriteFile
IF ELSE ." write error" QUIT THEN
CRLF
THEN
1+
THEN NEXT
DROP (discard ram location)

: close-mif-file
hFile @ CloseHandle DROP

: write-mif-file
open-mif-file
write-mif-header
write-mif-data
close-mif-file

FLOAD asm16R.f
FLOAD kern16R.f
FLOAD ef16R.f
write-mif-file
FLOAD sim16R.f

108

6.3 TheeP16 Optimizing Assembler

The ASM16r.f file contains a structured, optimiziagsembler for the eP16. It packs
up to 3 machine instructions into one 16-bit progsaord. The strategy of this

eP16 assembler is to clear a program location @ittt by a variable “hw”, preparing
it to receive up to 3 machine instructions. Assignebmmands are executed to
insert machine instructions into consecutive slo#sssembly commands make
necessary decisions as to whether to add moreiatisins to the current program
word, or start a new program word.

The eP16 has three types of instructions, 16-bit icetructions, 16-bit long
instructions and 5-bit short instructions. Thd g@truction format is:

15| 14-10 | 95 4-0
O | aaaaa | aaaad aaada

The long instruction format is:

15[14-10 | 9-5 4-0
1 | ccccc aaaaa aaaag

and the short instruction format is:

15[14-10 | 9-5 4-0
1 | ccccc CCCcCC CCCcC

ccccc is a 5-bit machine instruction, and aaaasbiit address. Each 16-bit
program word can contain a call instruction, a lorgjruction, or 3 short instructions.

Assembly commands for long instructions are defimgthe word JUMP, and
assembly commands for short instructions are definyethe word INST. Defining
words in FORTH makes this optimizing assembler \&emyple and very efficient.

However, this assembler does not use long instmtilirectly to redirect program
flow. Instead, it uses standard FORTH controlcttrree commands to build control
structures in assembly programs. It thus avoidsptications in labels and forward
referencing. It significantly simplifies this optizing assembler.

The eP16 eForth system is based on the Subroutieading Model, in which a
compound command consists of a list of subroutateiestructions. As call and
return instructions execute in a single cycle,dRé6 is very efficient in executing
FORTH compound commands as a list of subroutinansdtuctions. Compound
commands in the form of lists of subroutine caditractions can be freely intermixed
with other machine instructions. Thus this optimigzassembler becomes an
optimizing compiler as well.

109

HEX

VARIABLE h
VARIABLE lasth O lasth'! \initli
s namer! (d--)
h @ ram! \ store dou
1h+! \ bump nameh

: COMPILE-ONLY 40 lasth @ ram@ XOR lasth @ ram! ;
: IMMEDIATE 80 lasth @ ram@ XOR lasth @ ram! ;

VARIABLE hi VARIABLE hw VARIABLE bi (for packing
»align 0C hi!;

:org DUP . CR h! align;

callot (n--)h+!;

CREATE mask 7C00, 3EO, 1F,
‘#, (d)yh@ram! 1 h+!;

w (d)hw @ ram@ OR hw @ ram! ;
S (d)Yhi@O0C=IFO0hi!h@ hw! 8000
hi @ mask + @ AND ,w 4 hi +!;
:spread (n-d) DUP 20 * DUP 20 * + +;

;.1 (n)spread ,i;
cbbi@0=IF1bi'h@hw!O0#, ,w
ELSE O bi! 100 * ,w THEN ;

: inst CONSTANT DOES>R> @ ,i ;
1E spread inst nop

: anew BEGIN hi @ 0C < WHILE nop REPEAT 0 bi ! ;
:#(d) OA spread ,i #, ;

dldi #

LT (d--)#;

ccall(a) anew #, ;

: (makehead)
anew
20 WORD \ get nam
lasth @ namer! \fill li
h @ lasth ! \ save nfa in
COUNT DUP b \'st
1- FOR

COUNT ,b \ fill

NEXT
DROP anew

: makehead
>IN @ >R \ save in
(makehead)
R>>IN! \ restore

nkfield address Ifa

ble to code buffer

#, THEN

e of new definition

nk field of last word
lasth

ore count

name field

terpreter pointer

word pointer

110

COMPILE-ONLY | Patch Bit 6 in first word of name field in currdatget

command. Text interpreter checks it to avoid exagut
compiler commands.

IMMEDIATE Patch Bit 7 in first word of name fieldhicurrent target
command. Compiler checks it to execute commandwhi
compiling.

h A variable pointing to the next free memory etlthe top of the target

dictionary.

lasth A variable pointing to the name field of therent target command under
construction.

namer! | Compile a 16-bit value, “d”, to the top béttarget dictionary.

hw A variable pointing to a new program word beoogstructed.

hi A variable pointing to a slot to pack the nexahine instruction.

bi A variable pointing to a byte to pack the ne8@ll character.

align Initialize pointer “hi” to start assemblinghaw program word.

org Initialize pointer “h” to a new address to sassembling.

allot Add a “n” to pointer “h”. It skips an areatarget memory and starts
assembling above this area.

mask An array of 3 masks to isolate one 5-bit maeimstruction from a 16-bit
instruction pattern. A machine instruction can bseanbled in one of 3
instruction slots selected by “hi”.

#, Compile “d” to top of target dictionary. It is¢ most primitive assembler
and compiler. The eP16 assembler is an extensitmsoprimitive
assembly command.

W OR “d” to the program word pointed to by “hwt.denerally fills the
address field in the current program word.

spread | Repeat 5-bit machine instruction “n” in3adllots to form a 16-bit
instruction pattern. “mask” uses it to select a 80 assembling.

i Use “hi” to select one machine instruction irf ‘&@hd assemble it into the
program word selected by “hw”.

| Spread a 5-bit machine instruction to a 16-bitgrn and assemble a
machine instruction with “,i".

b Pack byte “b” into current program word. Poiritai’ determines which
byte field to pack. “bi” is incremented to faciliéapacking of next byte.

inst Define short instruction assembly commandstdates a short instructign
assembly command like a constant. When a shorticigin assembly
command is later executed, this constant is regdeas an instruction
pattern and a short machine instruction is assairnbte the current
program word by command “,i".

nop First short instruction assembly command ddfimg“inst”.

anew Fill current program word with NOPs and irii@ hi and hw to assemble
new machine instructions in the next program word.

Assemble a load literal LDI instruction. Itgelial value is assembled in
the next program word pointed to by "h".

Idi Alias of “#".

LIT Alias of “#”.

call Assemble a subroutine CALL instruction.

111

CSBLIT (--)
anew
22 WORD
COUNT DUP ,b (compile count)
1- FOR
COUNT ,b (compile characters)
NEXT
DROP anew ;

: jump CONSTANT DOES> anew 3FF AND R> @ OR #, ;
8000 jump bra
8000 jump jmp
8800 jump bz
8CO00 jump bc
9400 jump next
9400 jump NEXT
9400 jump <NEXT>

: return CONSTANT DOES> R> @ ,i anew ;
1 spread return ret
6 spread return times

: beginanew h @ ;
;until bz ;
: untilnc bc ;

;if h@O0bz; (8800)
cifnc h@ O bc; (8C00)
:skip h @ 0 bra; (8000)
: then begin 3FF AND OVER ram@ OR SWAP ram! ;
. else skip SWAP then ;
: while if SWAP ;
: whilenc ifnc SWAP ;
: repeat bra then ;
:again bra;
caft(a--a'a")

DROP skip begin SWAP ;

:BEGIN anew h @ ;
: UNTIL bz ;

: UNTILNC bc;
:JMP bra;

o | i

:IFNC ifnc ;

: SKIP skip ;

: THEN then;

. ELSE else;

: WHILE while ;

: WHILENC whilenc ;
: REPEAT repeat ;

: AGAIN bra;

AFT aft;

112

In the eP16 eForth system, all target commandsargpiled in a target dictionary,
and linked as a list. Each target command haskdikld of one 16-bit word, a
variable length name field in which the first bgtntains a length followed by the
ASCII code of the name string, null filled to a h#-word boundary, and a
variable-length code field containing 16-bit pragrar data words. Primitive target
commands have machine instructions in their cagld§i Compound target
commands generally have call instructions in thede fields. As call instructions
can intermix with other machine instructions, ptise commands are
indistinguishable from compound commands.

(makehead) Build a header for a new target command. The haadkrdes a link
field and a name field. The address of the nagid in the last
target command is stored in “lasth”, and is contpiteo the link
field. “h” points to the name field of the new commnal, and is copied
into “lasth”. Now, the following string is packeato the name field
starting with its length byte, and null filled tioet word boundary.
Now, “h” points to the code field of this new targemmand.

makehead | Build a header with (makehead) and saveatme string to define a
compiler command in metacompiler. It displays thene and code
field address. A string can be used repeatedlyakijng and restoring
its pointer in a “>IN” variable.

SLIT Compile a packed string for a string litertalworks similarly as
(makehead). However, the name string is delimitethb space
character (ASCII 0x20), while a string literal islinited by the
double-quote character (ASCII 0x22).

jump A defining command that creates long instarcassembly
commands. It uses transfer instruction code likersstant. When
a long instruction assembly command is later exagtut retrieves
this code, ORs it with a 10 bit address, and askenabtransfer
instruction in the target dictionary.

Following are the eP16 long instruction assembinm@ands defined by “jump”:

bra Assemble a branch always instruction, BRA.

bz Assemble a branch on zero instruction, BZ.

bc Assemble a branch on carry instruction, BC.

next Assemble a loop NEXT instruction.

return A defining command to create assembly conamdmat abandon

remaining slots in the current program word, aiagltgetching the
next program word.

ret Assembly command to return from subroutine. ¢edt” is similar to
“nop”, in that all machine instructions followingegm in the same
program word will be ignored.

times Assembly command to terminate a micro lobs. mot implemented
in eP16.

113

: "' begin .head CONSTANT DOES> R> @ call ;
: CODE makehead ": ; \ for eforth kerne
: code makehead ": ; \ for eforth kerne

08 spread inst Idrp 09 spread inst Idp (OA spre
spread inst Id

0C spread inst strp 0D spread inst stp OE spre
spread inst st

10 spread inst com 11 spread inst shl 12 spre
spread inst mul

14 spread inst xor 15 spread inst and 16 spre
spread inst add

18 spread inst popr 19 spread inst Ida 1A spre
spread inst over

1C spread inst pushr 1D spread inst sta (1E spre
spread inst pops

cfor(--a)
pushr begin ;

:FOR (--a)
pushr begin ;

| words
| words

ad inst Idi) OB
ad inst rr8 OF
ad inst shr 13
ad inst div 17
ad inst pushs 1B

adinstnop) 1F

114

The eP16 transfer instructions are not used directijhey are used by control
structure commands to construct control structurdhese commands are in lower
case for the assembler and in upper case for tpiter:

Command Function

begin Mark current location in target for later egk$ resolution.

until Terminate a begin-until loop if zero-flagakeared.

untilz Terminate a begin-until loop if zero-flagsst.

untilnc Terminate a begin-until loop if carry-flagycleared.

jmp Jump to the address on top of the parametek.sta

if Start a conditional branch structure. Assemble anstruction.

ifnc Start a conditional branch structure. Assenablb instruction.

skip Start a branch structure. Assemble a brauattm.

then Terminate a conditional branch structure Isplkeng the branch
instruction at “if” or “else”.

else Resolve branch instruction at “if”, and stabranch structure.
Assemble a bra instruction.

while Start a conditional branch structure in aibeghile-repeat loop.
Assemble a bz instruction.

whilenc Start a conditional branch structure iregib-while-repeat loop.
Assemble a bc instruction.

repeat Terminate a begin-while-repeat loop, andrabke a bra instruction to
“begin”.

again Terminate a begin-again loop, and assemila enstruction to “begin”.

CODE defines new primitive commands in the ePl@etar Primitive commands
thus defined will assemble CALL instructions in edeelds of compound commands

in the eP16 target.

Using the Subroutine Threaodel, primitive commands are

the same as compound commands. Their differermaysconceptual.

Define a nameless subroutine. “begin” pointshie code field and is
defined as a constant in the metacompiler. Theinu@ behavior of
this constant is changed to execute commands@&S>, which uses
the saved code field address to assemble a CAlttugi®on. It also
displays the name of the new command and its eixecatdress on th¢
terminal, with the .head command.

1%

CODE Define a new target command. It creates aheader in the target, and
then uses ‘: to start a new subroutine. It alsatgs an assembly
command in the metacompiler. This assembly comnagsdmbles a
subroutine call instruction.

code Alias of CODE.

for Assemble a “pushr” to start a FOR-NEXT loop.

FOR Alias of FOR.

All short eP16 instruction assemblers are defingtirst”. Their names are the same
as mnemonics of respective machine instructions.

115

6.4 TheePl6 Kernd

In the original eForth Model, a small group of FGHRRGommands were identified as
kernel commands, low level commands, or primitiwexmands. These commands
were coded in machine instructions of the host osientroller. All other commands
were written as lists of commands, and are caligd level commands or compound
commands. Compound commands are lists of primaéramands and other
compound commands. This division of commands veag useful in porting eForth
to many different microcontrollers, because oniyngive commands needed to be
rewritten when moving eForth to a new microconaoll

In eP16 eForth, we retained this division, andgsumitive commands in the
KERN16r.F file. However, we optimized commandsha eP16 so that the system
executes at the highest speed and occupies tharleasory space. All commands
that can be are written in assembly are so writteMuch more optimization is
achieved by a set of assembly macros, which asgetmdimost commonly used
compound commands in machine instructions and fheegde machine instructions as
tightly as possible. The end results are that simkeis significantly reduced and
execution speed greatly increased.

Commands in this file also serve as programmingngies for the optimal use of the
eP16 CPU. Itis worth your time to study them fidhg and use them as templates
when you want to convert compound commands interaShy.

In the LatticeXP2-5E FPGA chip, there are 166K bitEmbedded Block Memory,
EBM, and we use them to implement 4096 words obit AM memory. The
nicest feature of EBM is that it can be initializedm the on-chip flash memory. In
fact, this RAM memory can be used to host prograntsdata that otherwise would
have to be implemented in ROM memory. This featnaées it possible to
implement a complete FORTH system on a single FEI@B, which has never been
possible in other brands of FPGA.

Using EBM, the memory map of eP16 eForth is gresithplified:

Address Function

0x0 Reset and interrupt vectors
0x20 System variables

0x30 Text buffer

0x80 Terminal input buffer
0x100 Start of eForth dictionary
Ox1FFF End of RAM memory
OxFFOO Start of UART registers
OxFF04 Start of GPIO registers

The parameter stack and return stack are in thé e®¥&, and do not need RAM
memory.

116

HEX

cr .(system variables)

:HLD 201di; \scratch

: SPAN 21 Idi; \#chars input by expect
;>IN 22 1di; \input buffer offset

(#TIB 23 1di; \#chars in the input buffer
'TIB241di; \tb

:BASE 251di; \number base

cr
: CONTEXT 26 Idi ; \first search vocabulary
: CP 271di; \dictionary code pointer

: LAST 281di; \ptrto last name compiled
'EVAL 29 Idi; \interpret/compile vector
:'ABORT 2Adi ;

: TEXT 301Idi; \unpack buffer

:tmp 2B Idi; \ ptrto converted # string
:cpi2CIdi; \assembler slot poiner

:cpw 2D Idi; \ pointer to word under cons

: etxbuf FFOO Idi ;
. etxbempty FFO1 Idi ;
: erxbfull FFO2 Idi ;
»erxbuf FFO3Idi;

cr .(macro words) cr

: DOLIT #;

DEXIT ret ;

: EXECUTE (a) pushr ret anew ;
:l(na--)stast;

@ (a-n)stald;
:R>(-n) popr;

:R@ (-n) popr pushs pushr ;
: >R (n) pushr;

:DUP (n-nn)pushs;
:SWAP (n1ln2-n2nl)
pushr sta popr Ida ;
:DROP (ww --)
pops ;

: 2DROP (ww --)
pops pops ;
+(ww--w)add;
:NOT (w--w) com;
:AND and ;

: XOR xor ;

: OVER over ;
:NEGATE (n---n)
com 1 |di add ;
:1-(a--a)

-1 Idi add ;

1+ (a--a)

1 Idi add ;
:BL(--32)

20 Idi;

s+l (na-)

sta Id add st

truction

117

System variables are variables used by the eFgstera to support its interpreter and
its compiler. They are defined as assembly magnancands, with LDI machine
instructions pointing to their respective addressdle system variable area, starting
at location $20. These assembly macro commandsalseused by the
metacompiler to compile the system variables refed to in the eP16 target system.

Command | Address Function

HLD 20 Pointer to a buffer holding next digit fioameric
conversion.

SPAN 21 Number of characters received by EXPECT.

>IN 22 Input buffer character pointer used byt taterpreter.

#TIB 23 Number of characters in input buffer.

'TIB 24 Address of Terminal Input Buffer.

BASE 25 Number base for numeric conversion.

CONTEXT | 26 Vocabulary array pointing to last name fieléls o
vocabularies.

CP 27 Pointer to top of dictionary, the first dafale memory
location.

LAST 28 Pointer to name field of last commandliictionary.

'EVAL 29 Execution vector switching between $INRIBRET and
$COMPILE.

'ABORT 2A Execution vector to handle error cointit

TEXT 30 Buffer to unpack text strings.

tmp 2B Pointer to a scratch pad.

cpi 2C Pointer to slots in assembler.

cpw 2D Pointer to program word under construction

etxbuf FFO1 Transmit data register.

etxbempty | FFO1 Transmit status register.

erxbfull FF02 Receiver status register.

erxbuf FFO3 Receiver data register.

Assembly macro commands assemble one or more neaicistmuctions into the
target dictionary. One 16-bit program word cardhgb to 3 short machine
instructions. These assembly macro commands Eactaay instructions in a
program word as possible to make the most effiaisetof memory and execution
time. They allow the metacompiler to produce opted code for the target system.

118

- (ww--w)
com add 1 Idi add

:bR(nn-n)
com pushr com
popr and com ;

: ROT (w1l w2w3--w2w3wl)

pushr pushr sta popr
popr Ida ;

: 2DUP (w1l w2 -- wl w2 wlw2)

pushs pushr pushr
pushs sta popr Ida popr

:21(da--)
sta pushr stp
popr st ;
2@ (a--d)
staldp Id;
:COUNT (b--b+n)
sta Idp pushr Ida
popr ;

cr .(kernel words) cr
$100 org

code DOVAR popr ret
codeO<(n-f)
shl ifnc pushs pushs xor ret
then
-1 Idi ret
code UM+ (nn-ncarry)
add pushs
ifnc pushs pushs xor ret
then
1 Idi ret
code ?DUP (w--ww |O0)
pushs
if pushs ret then
ret

cr
code DNEGATE (d ---d)

com pushr com 1 Idi

add pushs

ifnc popr ret

then

popr 1 Idi add ret
code ABS (n--+n)

pushs shl

ifnc ret then

NEGATE ret
code=(ww--t)

xor

if pushs pushs xor ret then

-1 Idi ret

119

!

Macro Function

DOLIT Same as LIT. Assemble LDI; attach a valuaéxt word.

EXIT Assemble single machine instruction RET.

EXECUTE Push address in T to R and use RET to égetcu

! Pop T to A and then store value in memory.

@ Pop T to A and then read value from memory.

R> Assemble single machine instruction POPR.

R@ Pop R to T, duplicate T, and push T to R.

>R Assemble single machine instruction PUSHR.

DUP Assemble single machine instruction PUSH.

SWAP Use Rand Ato swap T and S.

DROP Assemble single machine instruction POP.

2DROP Pop T twice.

+ Assemble single machine instruction ADD.

NOT Assemble single machine instruction COM.

AND Assemble single machine instruction AND.

XOR Assemble single machine instruction XOR.

OVER Assemble single machine instruction OVER.

NEGATE Compliment T and add 1 to it.

1- Add -1toT.

1+ Add1toT.

BL Return $20, ASCII code for space.

+! Add n to contents of a. Pop ain T to A, fetelmber, add n, anc
store back.

- Subtract w3=wl-w2. Complement w2, add 1, andwatid

OR w3=w1l or w2. Complement w2, push it to R, commeat w1,
pop /w2, AND /w1, and complement results.

ROT Rotate wl, w2, w3. Push w3, push w2, saveon, pop w2,
pop w3, and copy wl back from A.

2DUP Duplicate wl/w2 pair. Dup w2, push w2, push d@p w1, pop
wl to A, pop w2, push wl from A, pop w2.

2! Store double integer d in a. Pop address g fmush dh, store dl
pop dh, and store dh.

2@ Fetch double integer from a. Pop address a teadl dl, read dh.

COUNT Retrieve n from a, and increment a. Popeskla to A, read n,

push n, restore a+1 from A, pop n back.

120

cr (pack b> and unpack >b strings)
codeB>(ba--b+la)
pushr sta Idp pushr
Ida popr popr sta
$FF Idi and
Id $FFO0O Idi and xor
rr8 st Ida ret
code >B (a b -- a+1 b+2 count)
pushr sta Idp pushr
Ida popr popr (a+1l nb) sta
pushs $FF Idi and stp rr8
pushs $FF Idi and stp rr8
pushr Ida popr $FF Idi and
ret

121

We are now actually compiling new commands intoténget dictionary. First,

assembly command ORG initializes the dictionarnfei h, to memory location
$100. The memory area below $100 is reservedeg®trand interrupt vectors,
system variables, text buffer, and the terminautriguffer.

The following are the first few code commands cdatpinto the eP16 target
dictionary. They are defined using the CODE command when they are
referenced later in the EP16r.F file, each of thdthcompile a subroutine call
instruction pointing to their code field. The ct®ito define a CODE command as
an assembly macro is rather arbitrary. However,abmmand requires a branch
instruction, it has to be coded as a CODE commia@chuse macro commands
cannot handle branch instructions gracefully. Agsdg macro commands only do
simple machine instruction placement.

Many compound commands defined in the original #Fmodel are now coded in
assembly and moved to this kernel. We tried towobest in giving you the
smallest and fastest FORTH system. All commanatsdan be optimized are so
optimized.

Command Function

DOVAR Execution code for variables. Return addidg®llowing program
word. DOVAR is always followed by its value in thext program
word, whose address happens to be in the R regidtap return
stack and this address is popped back onto thengdea stack.

0< If n<0, return true flag; otherwise, returnskalflag. Negative flag is if
bit T(15). Shift T left sends this bit into carrit B(16), which is
tested for branching by ifnc.

—

UM+ Add two integers on stack; return sum and ca&BD adds two
integers on parameter stack and carry bit is i) (Ifnc” tests this
bit and pushs a 1 or 0 on stack accordingly.

?DUP If wis not O, duplicate it; otherwise, domag. w is duplicated and
tested by “if”.

DNEGATE | Negate double integer d on stack. dh is first cemmginted and
pushed onto the return stack. dl is complementeldrecremented.
If carry is set, dh is retrieved and incrementddeowise, dh is
retrieved but not incremented

ABS Return absolute value of n. n is duplicated tested for being
negative by a left shift and “ifnc”. If negativeggate it; otherwise,
leave it alone.

= Return a true flag if the two numbers on paramstack are equal,
otherwise, return false flag. Use “xor” and “if” test equality.

B> Pack a byte at “b” into least significant 8 biis'a”. Return b+1 and
“a” to pack next byte.
>B Unpack 2 bytes from “a” to byte array at “b”.tRe a+1 and b+2 to

unpack next word. Least significant byte in “a’also returned, as it
may be the count of a packed string.

122

6.5 eP16 Compound Commands

The EF16R.F. file contains compound commands toobepiled into the eP16 target
image. These commands are defined with the “mmand and terminated by “;;”
command. They are like the regular “:” and *;” amiands in FORTH, but they
compile new eP16 commands into the eP16 targetemag

The ultimate goal of these commands is to implermaaritteractive operating system,
or a text interpreter, which accepts a line of FBIRRbmmands from a terminal,
executes these commands in sequence, and wa#edtrer line of commands.

The text interpreter is also called the outer prteter in FORTH. It is functionally
equivalent to an operating system in a conventionietocontroller. It accepts
commands similar to English words entered by a, @s®t carries out tasks specified
by the commands. As an operating system, thantpreter could be very
complicated, because of all the things it has to ddowever, because FORTH
employs very simple syntax rules, and has very mnmpernal structures, the FORTH
text interpreter is much simpler than conventia@@rating systems. It is simple
enough that we can buid it in these small setles fi

Let us summarize what a text interpreter does:

COLD Power up routine

QUIT Text interpreter

QUERY Accept text input from a terminal
EVAL Evaluate or interpret a line of text
PARSE Parse out a string from input text
SINTERPRET Interpret a string

$COMPILE Compile a string

NAMES$ Search dictionary for a command
NUMBER? Translate a text string into an integer
EXECUTE Execute a commasnd

IMMED? Is this command an immediate command?
LITERAL Compile a integer literal

COMPILE Compile a command token

FORTH allows us to build and integrate these fuumgigradually in modules. All
modules finally fall into their places in the commadaQUIT, which is the text
interpreter itself.

You might want to look up the code of QUIT firstchsee how the modules fit
together. A good feeling for the big picture wi#lp you in understanding lower
modules. Nevertheless, we will doggedly follow tbading order in the source
code, and hope that you will not get lost in thecess.

123

o code ;
Dret;

CRR .(Chararter 10) CRR

;. ?KEY erxbfull @ ;;

- KEY begin erxbfull @ until erxbuf @ ;;

:» EMIT begin etxbempty @ until etxbuf ! ;;

CRR .(Common functions) CRR

U< (uu--t)2DUP XOR 0< IF SWAP DROP 0< EXIT

n<(nn-1t)2DUP XOR O<IF DROP 0< EXIT

2“MAX(nn--n)2DUP < IF SWAP THEN DROP ;

= MIN (nn--n)2DUP SWAP < IF SWAP THEN DROP ;

mWITHIN (uuluh --t)\ul<=u<uh
OVER ->R -R> U< ;

CRR .(Divide) CRR
CODE UM/MOD (ud u --uruq)
com 1 |di add sta
pushr Ida pushr sta
popr popr
skip
CODE/MOD (nn--rq)
com 1 Idi add pushr
sta popr O Idi
then
div div div div
div div div div
div div div div
div div div div
div 1 Idi xor shr
pushr pops popr Ida
ret
CODEMOD (nn--r)
/MOD
pops ret
CODE/(nn--q)
/MOD
pushr pops popr ret
:>M/MOD (dn--rq)\floored
DUP 0< DUP >R
IF NEGATE >R DNEGATE R>
THEN >R DUP 0< IF R@ + THEN R> UM/MOD R>
IF SWAP NEGATE SWAP THEN ;;

THEN - 0< ;;
THEN - 0< ;;

124

Defining Compound Target Commands

Create a new compound target command. Becauséhakses the
Subroutine Threading Model, compound commands @anddvel
primitive commands are the same.

Terminate a compound command. Assemble a REhimec
instruction. All commands are called as subroutines RET will
unnest a subroutine call, as well as a list of cutine calls.

Character 1/0

?KEY

Inspect register “erxbfull” and return a trlexg if a character has
been received. If no character was received, retdafse flag.

KEY

Wait for a character, and return it after rexgag it in “erxbuf”.

EMIT

Wait until transmit buffer is empty, by tesgmegister “etxbempty”.
Then send out a character to register “etxbuf”.

Common Functions

Return true if two integers are equal.

U< Compare two unsigned integers. Return trueabsd integer is less
than top integer. It is used to compare addresses.

< Compare two signed integers. Return true if sééoteger is less
than top integer.

MAX Retain the larger of top two signed integerssteack.

MIN Retain the lesser of top two signed integersiack.

WITHIN Check whether the third signed integer aacktis within range
specified by top two signed integers. The rangedkisive of the
lower limit and exclusive of the upper limit. Ifatthird item is within
range, a true flag is returned.

Divide

UM/MOD | Divide an unsigned double integer by an gned single integer.
Return unsigned remainder and unsigned quotiergigdad double
integer dividend is in the T:A register pair, andegated 16-bit
divisor is in the S register. Repeat “div” steptitides. Remainder in
the T register is shifted once too many, and ittbdse shifted back
one bit to the right.

/IMOD Divide a signed single integer by a signe@gar. Return signed
remainder and quotient.

MOD Divide a signed single integer by a signeegatr. Return signed
remainder.

/ Divide a signed single integer by a signed inteBeturn signed
guotient.

M/MOD Divide a signed double integer by a signetyk integer. Return
signed remainder and signed quotient.

M/ Divide a signed double integer by a signed sngteger. Return

signed quotient.

125

CRR .(Multiply) CRR
CODE UM* (uu--ud)

sta O Idi

mul mul mul mul

mul mul mul mul

mul mul mul mul

mul mul mul mul

pushr pops Ida popr

ret
m*(nn--n)UM*DROP ;;
SM*(nn--d)

2DUP XOR 0< >R ABS SWAP ABS UM* R> IF DNEGATE T
2 *MOD (nnn-rq)>R M*R>M/MOD ;;
m*(nnn-q)*MOD SWAP DROP ;;

CRR .(Bits & Bytes) CRR

2 >CHAR (c--c¢)

$7F LIT AND DUP $7F LIT BL WITHIN
IF DROP (CHAR _) $5F LIT THEN ;;

CRR .(Memory access) CRR
~“HERE(--a)CP @ ;;
“PAD(--a)CP @50LIT +;;
=TIB(--a)TIB@ ;;

CRR
" @EXECUTE (a--) @ ?DUP IF EXECUTE THEN ;;
2 CMOVE (bbu-)

FOR AFT >R DUP @ R@ ! 1+ R> 1+ THEN NEXT 2DROP ;;
wFILL(buc--)

SWAP FOR SWAP AFT 2DUP ! 1+ THEN NEXT 2DROP ;;
: PACKS$ (bua--a)\nullfil

pushs pushr

1 Idi tmp sta st

sta pushs pushr rr8 st

Ida popr

FOR AFT (b a)

B>

tmp sta ld

IF Oldist

1 Idi add
pushs sta 0 Idi st

ELSE 1 Idi st

THEN

THEN NEXT
tmp sta ld

IF sta ld rr8 st

ELSE pops
THEN

pops popr

HEN ;;

126

Multiply

umM+*

Multiply two unsigned integers and produce arsigned double
integer product. “mul” conditionally adds the inéegn S to T if bit
A(0) is set, and the T:A register pair is shiftiridgpy 1 bit. Two
multiplicands are placed in the S and A registeRepeat “mul” 16
times and a 32-bit product is produced in the Egister pair.

Multiply two signed integers to produce a sigrs#agle integer
product.

M*

Multiply two signed integers to produce a sigrekmlible integer
product.

*MOD

Multiply signed integers n1 and n2, and tledvide the double
integer product by n3. Scale nl1 by n2/n3. Retuotk kemainder
and quotient.

*/

Similar to */MOD except that it only returns qtient.

Bitsand Bytes

>CHAR

Filter non-printable character to a harmlesslerscore’ character,
ASCII 95.

Memory Access

HERE

Returns address of WORD buffer 1 cell aboveroand dictionary.
Text interpreter parses out a string from Terminplt Buffer and
packs it here. In case this string is the namer@va command, it is
already in the name field.

PAD

Returns address of a buffer pad 80 cells alsowemand dictionary.
It is a scratch pad area to store temporary texidata. It floats on to
of the dictionary as new commands are added tdittienary. The
memory area below PAD is used for numeric convarsiduild a
number string backwards as least significant dijiesextracted from
an integer.

TIB

Return address of Terminal Input Buffer.

@EXECUTE

Jump to execution address stored in a memory mtéa’.

CMOVE

Copy “u” cells of memory from array “bl” taray “b2”.

FILL

Fill “u” cells of memory array “b” with theame data, “c”.

PACK$

Copy “u” bytes in a byte array at “b” and gdbem into a cell array
at “a”. A packed string starts with a length byiteghe lowest 8 bits of
the first cell. PACKS$ is designed to pack bytesiotlls in a
cell-addressable machine. The packed string isfilet to a word

boundary. Target address “a” is returned.

127

/i

$1E LIT and 1 LIT xor
shr ret
mUNPACK$ (ab--b)
DUP >R (save b)
>B//

FOR AFT

>B DROP

THEN NEXT

2DROP R>

CRR .(Numeric Output) CRR \ single precision

= DIGIT (u--¢)

9 LIT OVER < 7 LIT AND +
(CHARO)30LIT+;;

" EXTRACT (nbase--nc)

0 LIT SWAP UM/MOD SWAP DIGIT ;;
n<#(--)PADHLD'!;;

HOLD (c--)HLD @ 1- DUP HLD !'! ;;
m#(u--u)BASE @ EXTRACT HOLD ;;

:#S (u--0) BEGIN # DUP WHILE REPEAT ;;
CRR

2 SIGN (n--)0<IF (CHAR -) 2D LIT HOLD THEN
n#>(w--bu)DROPHLD @ PAD OVER - ;;
nstr(n--bu)DUP >R ABS <# #S R> SIGN #> ;;
= HEX (--)10LIT BASE ! ;;

:: DECIMAL (--) OALIT BASE ! ;;

CRR .(Numeric Input) CRR \ single precision
:DIGIT? (cbase --ut)
>R (CHARO0) 30 LIT -9 LIT OVER <
IF7LIT - DUP OA LIT <OR THEN DUP R> U< ;;
2 NUMBER? (a--nT|aF)
BASE @ >R 0 LIT OVER COUNT (a0 b n)
OVER @ (CHAR $) 24 LIT =
IF HEX SWAP 1+ SWAP 1- THEN (a0 b'n’)
OVER @ (CHAR-)2D LIT=>R (a0bn)
SWAP R@ - SWAP R@ + (a0b"n") ?2DUP
IF1-(aObn)
FOR DUP >R @ BASE @ DIGIT?
WHILE SWAP BASE @ * + R> 1+
NEXT DROP R@ (b ?sign) IF NEGATE THEN SWAP
ELSE R> R> (b index) 2DROP (digit number) 2
THEN DUP
THEN R> (n ?sign) 2DROP R> BASE ! ;;

DROP O LIT

128

Il Divide top of stack by 2.

UNPACK$ Unpacks a packed string at “a” to a bytayat “b”. The first byte
in the packed string is a length byte. Unpack ayto 31 bytes.
Use >B to do unpacking.

UNPACK Identical to UNPACKS, except it unpacks sgs up to 255 bytes.

Numeric Output

FORTH is interesting in its special capabilitiehemdling numbers across a
man-machine interface. It recognizes that machamelshumans prefer very
different representations of numbers. Machinefepianary representation, but
humans prefer decimal Arabic representation. He@wnelepending on
circumstances, a human may want numbers to besemesl in other radices, like
hexadecimal, octal, and sometimes binary.

FORTH solves this problem of internal (machine)susrexternal (human) number
representations by insisting that all numbers epeasented in binary form in CPU
and memory. Only when numbers are imported or gggdor human consumption

are they converted to external ASCII representatiorhe radix of the external
representation is stored in system variable BASEe user can select any
reasonable radix in BASE, up to 72, limited by &aae printable characters in the
ASCII character set.

DIGIT Convert integer “u” to a digit “c”.

EXTRACT | Extract least significant digit “c” from a numbar™ “n” is divided
by radix “base”.

HOLD Insert an ASCII character “c” in numeric outsiring.

H# Extract one digit from integer “u”, according tadix in BASE, and
add it to output string.

"#S" Extract all digits to output string until “u$ O.

SIGN Insert a “-” sign in numeric output strind‘if’ is negative.

#> Terminate numeric conversion and return addxeddength of outpu
string.

str Convert signed integer “n” to a numeric outpwing.

HEX Set numeric conversion radix to 16 for hexaaediconversions.

DECIMAL | Set numeric conversion radix to 10 for decimal @sions.

Numeric Output

DIGIT? Convert a digit “c” to its numeric value “@ccording to current radi
“b”. If conversion is successful, push a true fédmgpve “u”. If not
successful, return “c” and a false flag.

NUMBER? | Convert a count string of digits at location “a’ao integer. If first

character is a $, convert in hexadecimal; othervagsavert using
radix in BASE. If first character is a “-”, negdtgeger. If an illegal
character is encountered, address of string aatsa flag are
returned. Successful conversion returns integerevanhd a true flag.

129

CRR .(Basic I/0) CRR

:: SPACE (--) BLEMIT ;;

. CHARS (+nc--)

SWAP 0 LIT MAX

FOR AFT DUP EMIT THEN NEXT DROP ;;
:: SPACES (+n --) BL CHARS ;;
“TYPE(bu--)

FOR AFT DUP @ >CHAR EMIT 1+
THEN NEXT DROP ;;

= CR(--)(=Cr)

OA LIT OD LIT EMIT EMIT ;;

2 do$ (--a)

R> R@ TEXT UNPACKS$

R@ R> @ $FE LIT AND

1 LIT XOR shr 1+ +

>R SWAP >R ;;
400 org
CRR

28" (-a)dos$;;

" (--) do$ COUNT TYPE ;;
S.R(n+n--)

>R str R> OVER - SPACES TYPE ;;
SUR(u+n--)

>R <# #S #> R> OVER - SPACES TYPE ;;
mU.(u--)<##S#> SPACE TYPE ;;
m.(n--)

BASE @ OA LIT XOR

IF U. EXIT THEN str SPACE TYPE ;;
t?2(a--)@ . ;

CRR .(Parsing) CRR
.. (parse) (b uc -- b udelta; <string>)
tmp ! OVER >R DUP\buu
IF1-tmp @ BL =
IF \ b u'\'skip'
FOR BL OVER @ - 0< NOT
WHILE 1+
NEXT (b) R> DROP 0 LIT DUP EXIT \ all delim
THEN R>
THEN OVER SWAP \ b'b' u'\ 'scan’
FORtmp @ OVER @ - tmp @ BL =
IF O< THEN WHILE 1+
NEXT DUP >R
ELSE R> DROP DUP 1+ >R
THEN OVER - R> R> - EXIT
THEN (b u) OVER R> - ;;
:» PARSE (¢ -- b u; <string>)
>RTIB>IN @ +
#TIB @ >IN @ -
R> (parse) >IN +! ;;
. TOKEN (-- a ;; <string>)
BL PARSE 1F LIT MIN 2DUP
DUP TEXT ! TEXT 1+ SWAP CMOVE
HERE 1+ PACKS ;;
:» WORD (c -- a; <string>)
PARSE HERE 1+ PACKS ;;

130

Basicl/O

SPACE Output a blank space character.

SPACES | Output “n” blank space characters.

CHARS | Output a string of “n” characters “c”.

CR Output a carriage-return and a line-feed.
TYPE Output “n” characters from a string in memdtoy.
do$ Unpack a packed string literal, pointed to 8grass on return stack.

The string is unpacked to TEXT buffer “a”. The met@address on retum
stack is incremented to skip over the string litera

String literals are data structures compiled in poond commands, in-line with other
commands. A string literal must start with a gfraommand, which knows how to
handle the following packed string at run time.

3| Alias of "do$. Unpack following packed stringthis string literal and
return address of unpacked string.

U Unpack following packed string in this strilitgral and output string
characters.

R Output a signed integer “n” right-justified irfiald of “+n” characters.

U.R Output an unsigned integer “n” right-justifieda field of “+n”
characters.

u. Output an unsigned integer “u” in free formatjdwed by a space.

: Output a signed integer “n” in free format, folled by a space.

? Output a signed integer stored in memory “afree format followed
by a space.

Parsing

FORTH source code consists of commands, which 8€@IRstrings separated by
spaces and other white space characters likedaliggge returns, and line feeds.
The text interpreter scans text in the Terminautripuffer, TIB, isolates strings and
interprets them in sequence. After a string is@awout of the input stream, the text
interpreter “interprets” it,—executes it if it iscammand, compiles it if the text
interpreter is in compiling mode—,and convert®iatnumber if the string is not a
valid command.

(parse) Parse out the first string delimited byrabter “c” from input buffer at
b1, length ul. Return address b2 and length uBeo$tring just parsed
out, and the difference “n” between b1l and b2.

PARSE Parse a string delimited by character “cTliB, from character pointed
to by >IN. It returns address “b” and the lengttpafsed string “u”.

—

TOKEN | Parse out next text string delimited by acgpeharacter in TIB. The te
string is assumed to be the name of a commandislahgth is limited
to 31 characters. This string is packed into theRBMuffer one cell
above the dictionary; i.e., HERE+1.

WORD Parse out next text string delimited by chamatc” in TIB. This string
Is packed into the WORD buffer one word above tramand
dictionary; i.e., HERE+1. Length of string is limdt to 255 characters.

131

CRR .(Dictionary Search) CRR
: NAME> (a -- xt)
DUP @ // + 1+ ;;
::SAME? (aau--aaf\-0+)
1
FOR AFT OVERR@ + @
OVERR@ + @ - ?DUP
IF R> DROP EXIT THEN
THEN NEXT
OLIT;
find (ava--xtnalaF)
SWAP \vaa
DUP @ tmp ! \ va a \ get cell count
DUP @ >R \vaa \count
1+ SWAP \a'va
BEGIN @ DUP \ a' na na
IF DUP @ $FF3F LIT AND
R@ XOR \ ignore lexicon bits
IF1+-1LIT
ELSE 1+ tmp @ SAME?
THEN
ELSE R> DROP SWAP 1- SWAP EXIT\a F
THEN
WHILE 1- 1-\a'la
REPEAT R> DROP SWAP DROP
1- DUP NAME> SWAP ;;
" NAME? (a--xtna|aF)
CONTEXT find ;;

CRR .(Terminal) CRR
“"MH(bbb--bbb)\backspace
>R OVER R> SWAP OVER XOR
IF (=BkSp) 8 LIT EMIT
1- BL EMIT \ distructive
(=BkSp) 8 LIT EMIT \ backspace
THEN ;;
:: TAP (bot eot cur ¢ -- bot eot cur)
DUP EMIT OVER ! 1+ ;;
. KTAP (' bot eot cur c -- bot eot cur)
DUP (=Cr) OD LIT XOR
IF (=BkSp) 8 LIT XOR
IF BL TAP ELSE "H THEN
EXIT
THEN DROP SWAP DROP DUP ;;

CRR

maccept(bu--bu)

OVER + OVER

BEGIN 2DUP XOR

WHILE KEY DUP BL - 5F LIT U<
IF TAP ELSE kTAP THEN
REPEAT DROP OVER - ;;

: EXPECT (b u --) accept SPAN ! DROP ;;

" QUERY (--)

TIB 50 LIT accept #TIB !
DROPOLIT>IN!;;

132

Dictionary Search

In this FORTH system, records of commands are tinke a command dictionary.
A record contains three fields: a link field holgithe name field address of the
previous record, a name field holding the naméisf command as a packed string,
and a code field holding the executable code sfcbmmand. The command
dictionary is a linear list linked through link fiss and the name fields of all records.

NAME> | Return code field address “xt” from name die@lddress “a” of a
command.

SAME? | Compare two packed strings at “al” and “az™h” cells. If
string1l>string2, returns a positive integer. Ifrgjd<string2, return a
negative integer. If strings are identical, retar®.

find Look up a packed string at “a” in command iicarry. Search starts at
“va”. If a command is found, return code field aglsl “xt” and name
field address “na”. If the string is not found, et address “a” and a
false flag.

NAME? | Search dictionary from CONTEXT for a naméait Return code field
address and name field address if a command islifddtherwise,
return address “a” and a false flag.

Terminal

The text interpreter interprets source text reakivem an input device and stored in
the Terminal Input Buffer. To process characterthe Terminal Input Buffer, we
need special commands to deal with the specialitons of backspace character and
carriage return:

"H Process back-space. Erase last character anehoat “cur”. If
“cur’="bot”, do nothing because you cannot backeydnd beginning
of input buffer.

TAP Output character “c” to terminal, store “c™icur”, and increment
“cur”, which points to the current character. “batid “eot” are the
beginning and end of the input buffer.

KTAP Processes character “c”. “bot” is the begignaf the input buffer, and
“eot” is the end. “cur” points to the current chaex in the input buffer.
“c” is normally stored at “cur”, which is incremexat by 1. If “c” is a
carriage-return, echo a space and make “eot”="culf’c” is a
back-space, erase the last character and decrécn€nt

accept Accept “u” characters into buffer at “b”,wntil a carriage return. The
value of “u” returned is the actual count of chéeas received.

EXPECT | Accept “u” characters into buffer at “b”, or undilcarriage return. The
count of characters received is in SPAN.

QUERY | Accept up to 80 characters from the inputiceto the Terminal Input
Buffer. This also prepares the Terminal Input Bufte parsing by
setting #TIB to characters received and clearirig, pbinting to the
beginning of the Terminal Input Buffer.

133

CRR .(Error handling) CRR
2 ABORT (--) 'ABORT @EXECUTE ;;
. abort" (f--)
IF do$ COUNT TYPE ABORT THEN do$ DROP ;;

CRR .(Interpret) CRR
»ERROR (a--)
DROP SPACE TEXT COUNT TYPE
$3F LIT EMIT CR ABORT
 SINTERPRET (a--)
NAME? ?DUP
IF @ $40 LIT AND
abort" $LIT compile only" EXECUTE EXIT
THEN DROP TEXT NUMBER?
IF EXIT THEN ERROR
forth_' SINTERPRET >body forth_@ LIT 'EVAL !
. IMMEDIATE
2 .OK (--)
forth_' SINTERPRET >body forth_@ LIT 'EVAL @ =
IF."] $LIT OK" CR
THEN ;;
2 EVAL ()
BEGIN TOKEN DUP @
WHILE 'EVAL @EXECUTE \ ?STACK
REPEAT DROP SPACE .OK ;;

CRR .(Shell) CRR
S QUIT (--)
(=TIB) $AO LIT 'TIB'!
[BEGIN QUERY EVAL AGAIN

CRR .(Compiler Primitives) CRR
n (- xt)

TOKEN NAME? IF EXIT THEN
ERROR

;2 ALLOT (n--) anew CP +! ;;
“,(w--)HEREDUP 1+ CP !'!;;
:: [COMPILE] (-- ; <string>)

', IMMEDIATE

CRR

. COMPILE (--)R>DUP @, 1+ >R ;;
:: LITERAL $ABDE LIT, ,

. IMMEDIATE

2$"(--)(CHAR™")

22 LIT WORD NAME>CP ! ;;

: (CALL) (a--call) 7FFF LIT AND ;;

134

Interpreter

ABORT

Execute the command whose address is inyisters variable
'ABORT. This address normally points to QUIT.

abort"

When the top item on stack is non-zero, wiutipe following
packed string and execute ABORT; otherwise, skigr @vror
message. It is compiled before a packed error rgessa

ERROR

Display error message in TEXT buffer and at@ABORT.

[

Activate interpreting mode by storing $SINTERPRIHETo variable
'EVAL, which is executed in EVAL.

.OK

Prints the OK prompt. OK is printed only whée ttext interpreter
is in interpreting mode. While compiling, the OKopmpt is
suppressed.

EVAL

Interpreter loop, which parses strings frore therminal Input
Buffer, and the command in 'EVAL to process a string,egith
executing it with SINTERPRET or compiling it wittCOMPILE.

SINTERPRET

Processes a string at “a”. If it is \dvaommand, execute it;
otherwise, convert it to a number. Failing thagk@xe ERROR an
return to QUIT.

Compiler Primitives

Search dictionary for following name, and retitshcode field
address if a command is found; otherwise, prinbanmg message
with “?”.

ALLOT

Allocate “n” cells of memory on top of dicti@ry.

Compile an integer “w” to dictionary, and add tiew item to the
growing command list of the current command und&struction.
This is the primitive compiler.

[COMPILE]

Compile the code field address of the next commHrmmdmpiles an
immediate command, even if it would otherwise becexed.

COMPILE

Compile the code field address of the re@xhmand. It forces
compilation of a command at run time.

LITERAL

Compile an integer literal. It first compei$ doLIT, followed by an
integer vale from the stack. When doLIT is executeextracts the
integer in the next program word and pushes ihenstack.

$,

Compile a packed string. String text is takemfithe input stream
and terminated by a double quote. A token (sucH'jagr $"|) must
be compiled before the string to form a sting &ter

(CALL)

Compile or assemble a subroutine CALL instran with the code
field address on the stack. Compound commandsoangited as
lists of subroutine calls.

135

CRR .(Name Compiler) CRR
:»?UNIQUE (a--a)
DUP NAME?
IF TEXT COUNT TYPE ."| $LIT reDef "
THEN DROP ;;
t$n(a--)
DUP @
IF 2UNIQUE
(na) DUP NAME> CP !
(na) DUP LAST !\ for OVERT
(na) 1-
(la) CONTEXT @ SWAP ! EXIT
THEN ERROR

CRR .(FORTH Compiler) CRR

:: $COMPILE (a--)
NAME? ?DUP
IF @ $80 LIT AND
IF EXECUTE
ELSE (CALL) , anew
THEN EXIT
THEN DROP TEXT NUMBER?
IF LITERAL anew EXIT
THEN ERROR
- OVERT (--) LAST @ CONTEXT ! ;;
$87DE LIT , [OVERT ;; IMMEDIATE
S](--
forth_' $COMPILE >body forth_@ LIT 'EVAL! ;;
(- <string>)
TOKEN $,n];;

CRR .(Tools) CRR
mdm+(bu--hb)

OVER 6 LIT U.R SPACE

FOR AFT DUP @ 9 LIT U.R 1+
THEN NEXT ;;

::DUMP (bu-)

BASE @ >R HEX 8 LIT/

FOR AFT CR 8 LIT dm+

THEN NEXT DROP R> BASE ! ;;

CRR
2 >NAME (xt--na|F)
CONTEXT
BEGIN @ DUP
WHILE 2DUP NAME> XOR
IF 1-
ELSE SWAP DROP EXIT
THEN
REPEAT SWAP DROP ;;
».AD (a--)
TEXT UNPACK$
COUNT $01F LIT AND TYPE SPACE ;;

136

Name Compiler

?UNIQUE | Display a warning message to show thah#me of a new commangd
is the same as a command already in the dictionary.

$,n Build a new header in the dictionary usingriaene string already
packed in the WORD buffer. Fill in the link fieldithr the address in
LAST. The top of the dictionary is now the codddief a new
command, ready to accept commands and tokens.

$COMPILE | Process a string at “a”, and compile a new tokemallanstruction, in
the dictionary. This dictionary pointer in CP igieamented, and is
ready to compile the next token.

OVERT Link a new command to the dictionary and midleerailable for a
dictionary search. OVERT changes CONTEXT to pairtihie name
field of this new command, and extends the dictiprhain to
include a new command.

; Terminate a compound command. Compile a RETunstn to
terminate a token list. Link this command to thetidnary, and
change the text interpreter to interpreting mode.

] Activate compiling mode by writing the addresss@fOMPILE into
system variable 'EVAL.

Create a new compound command. Take the next gtpag to build
a new header. Now, its code field is on top ofdbexmand
dictionary, and is ready to accept new tokens.

Tools

dm+ Display 8 words from address “b”. Return newrads b+8 for the
next dm+.

DUMP Display “u” words from address “b”, with 8 was on a line. A line
begins with an address, followed by 8 words in hex.

Decompiler Tools

Since name fields are linked into a list in the owend dictionary, it is fairly easy to
locate a command by searching its name in the comdrd&tionary. However,
finding the name of a command from its code fieldrass is more difficult, because
the name field has variable length, and we cancent he name field backwards very
easily.

>NAME Return a code field address, “xt”, of a conmddrom its name field
address, “na”. If “xt” is not a valid code field dwss, return 0. It
follows the linked list of the command dictionaayd from every
name field address we can get a correspondingfeeldeaddress. If
this address is not the same as “xt”, we go totmae field of the
next command. If “xt” is a valid code field addreg surely will
find it. If the entire dictionary is searched axdis not found, it is
not a valid code field address.

D Display the name of a command, given its naiele fiddress “a”. It
replaces non-printable characters in a name byrsookes.

137

CRR
. SEE (--; <string>)
'CR
BEGIN
20 LIT FOR
DUP @ DUP 8000 LIT AND
IF U. SPACE
ELSE >NAME
?DUP IF .ID THEN
THEN 1+
NEXT KEY 0D LIT =\ can't use ESC on terminal
UNTIL DROP ;;
;" WORDS (--)
CR CONTEXT
BEGIN @ ?DUP
WHILE DUP SPACE .ID 1-
REPEAT ;;
CODE .S (dump all 33 stack items)
PAD sta stp
stp stp stp stp
stp stp stp stp
stp stp stp stp
stp stp stp stp
stp stp stp stp
stp stp stp stp
stp stp stp stp
stp stp stp stp
PAD $21 LIT
FOR DUP ? 1+ NEXT
DROP PAD @ CR ;;

CRR .(file download and upload) CRR
:: READ PAD
BEGIN KEY DUP 1A LIT XOR
WHILE OVER ! 1+
REPEAT DROP
PAD - SPAN ! ;;
©TOK'TIB@ >R #TIB @ >R >IN @ >R
PAD 'TIB! SPAN @ #TIB! O LIT >IN !
EVALR>>IN!R>#TIB!R>'TIB ! ;;
+“SEND (bu--)
CR
FORAFTDUP @ <## ## ## # #> TYPE 1+
DUP 7 LIT AND IF SPACE ELSE CR THEN
THEN NEXT
DROP ;;
:» FORGET (--)
TOKEN NAME? ?DUP
IF 1- DUP CP!
@ DUP CONTEXT ! LAST !
DROP EXIT
THEN ERROR

138

SEE Search the next word in the input stream foramand, and decompiILe

the first 32 program words in its code field. Desphn error message i
the next word is not a valid command. It scansctde field and looks
for CALL instructions. If it finds a CALL instruabin, use the address in
the address field to find this command in the comangdictionary, and
display its name. If a word in the code field is adCALL instruction,
just display its value.

WORDS | Display all names in the command diction@he display order of
commands is reversed from compiling order. Thedafihed command
is displayed first.

S Display the contents of the parameter staclcoges in free format.
The bottom of the stack is shown on the right. Tpetem is shown on
the left. The eP16 has a 32-level hardware paramtek in the CPU,
and it wraps around like a circular buffer. .S thyp all 32 stack levels
and the T register.

File Download and Upload

If the eForth system is connected to the serial @ios computer, the computer can
emulate a terminal to communicate with eForth. ™Mesninal emulation programs
can send large text files to the serial port. Uber can now compose and edit large
applications as text files on the computer. Thfike can then be downloaded to
eForth for interpreting or compiling.

PAD is a free memory area 80 words above the tagpeo€ommand dictionary. It
can be used to store temporary data, and is ahptiez to download a text file.

READ Accept characters from terminal and store tiePAD buffer. A Ctrl-Z
character terminates the READ command. After aiildownloaded,
the length of the file is stored in variable SPAN.

OK Interpret text downloaded in PAD buffer. In QUHVAL interprets text
in the Terminal Input Buffer. EVAL uses three systeariables to
manage the Terminal Input Buffer: 'TIB points te theginning of the
text buffer, #TIB contains the length of the teattd >IN points to a
character in the text buffer currently being intetpd. OK saves these
three variables, replaces them by PAD, SPAN, abdamd then calls
EVAL to interpret the text in the PAD buffer. Aftére text is interpreted
successfully, 'TIB, #TIB and >IN are restored amel text interpreter is
restored to its normal state.

SEND Upload contents of a memory area, “n” wordststg at address “b”, ta
the terminal. Each word is sent as 8 hex digitéovieed by a space. A
carriage return-linefeed pair is sent every 8 words

FORGET | Search the next word in the input stream for a camanlf it is a valid
command, delete it and all subsequent commanddedmm the
dictionary.

139

CRR .(Hardware reset) CRR
800 org

:: DIAGNOSE (-)
$65 LIT
\ mask
\'F' prove UM+ 0< \carry, TRUE, FALSE
OLITO<-2LITO< \OFFFF
UM+ DROP \ FFFF (-1)
3 LIT UM+ UM+ DROP \3
$43 LIT UM+ DROP \'F
\'0' logic: XOR AND OR
$4F LIT $6F LIT XOR \ 20h
$FO LIT AND
$4F LIT OR
\'r' stack: DUP OVER SWAP DROP
8 LIT 6 LIT SWAP
OVER XOR 3 LIT AND AND
$70 LIT UM+ DROP \'r'
\ 't'-- prove BRANCH ?BRANCH
O LIT IF $3F LIT THEN
-1 LIT IF $74 LIT ELSE $21 LIT THEN
\'h' -- @ ! test memeory address
$68 LIT $80 LIT !
$80 LIT @
\'M' -- prove >R R> R@
$4D LIT >R R@ R> AND
\''l' -- prove 'next' can run
61 LIT $ALIT FOR 1 LIT UM+ DROP NEXT
\''S' -- prove Ildp, stp, Idrp, strp
$50 LIT $3 LIT
$30 LIT sta stp stp
$30 LIT sta ldp Idp
Xor
\ EMIT
\'emi’ -- prove mul, dupy, popy
$656D LIT $100 LIT UM*
SWAP $100 LIT UM*
SWAP pops
\' EMIT EMIT
\' C' -- prove div
$2043 LIT O LIT $100 LIT UM/MOD
\' EMIT EMIT

CRR
2 COLD (--)
DIAGNOSE
CR."| $LIT eP16 v"
12D LIT <# ## (CHAR .) 2E LIT HOLD # #> TYPE
CR QUIT

140

Hardware Reset

When eP16 is powered up, or when it is reset,acates COLD to start the eForth
system running. The first thing COLD does is eatliagnostic routine, DIAGNOSE,
to run a series of tests, verifying that the eRdr@ ¢s working properly. It is
superfluous once the eP16 is fully debugged. Hewen implementing the eP16

on a new FPGA or on a custom chip, DIAGNOSE isesr@ly helpful in hardware
simulation and in hardware verification. In ab@000 cycles, you can observe most
instructions executed, and verify that they execoteectly.

DIAGNOSE tests the following machine and primitcs@mmands in the eP16:
LIT
o<

Bz
UM+
DROP
XOR
AND
OR
DUP
OVER
SWAP
BRA

@

!

>R
R@
R>
NEXT
STA
STXP
LDXP
RR8
UM*
UM/MOD

Cold Boot

COLD initializes the eP16 to start running eFortihe eP16 is a real FORTH
microcontroller, and the hardware initializes itsel COLD does not have much to
do. It first executes DIAGNOSE to run a few temtseP16 machine instructions,
displays a sign-on message, and then jumps to QUCIOLD is the first compound
command executed after power up or after chip red&t address is placed in
memory location 0, which is the hardware resetorect

141

CRR .(Structures) CRR

:: OFFSET (A --a) 3FF LIT AND ;;

:: BEGIN (-- a) anew HERE ;; IMMEDIATE

:: THEN (A --) BEGIN OFFSET SWAP +! ;; IMMEDIATE
: FOR (-- a) F3DE LIT , BEGIN ;; IMMEDIATE

CRR

:* NEXT (a--) OFFSET 9400 LIT XOR , anew ;; IMM

;2 UNTIL (a--) OFFSET 8800 LIT XOR , anew ;; IMM

;2 AGAIN (a--) OFFSET 8000 LIT XOR, anew ;; IMM

2 IF(--A) BEGIN 8800 LIT, ;; IMMEDIATE

CRR

:: AHEAD (-- A) BEGIN 8000 LIT , ;; IMMEDIATE

:: REPEAT (A a--) AGAIN THEN ;; IMMEDIATE

:: AFT (a--aA) DROP AHEAD BEGIN SWAP ;; IMMEDI
- ELSE (A -- A) AHEAD SWAP THEN ;; IMMEDIATE
“WHEN (aA--aAa)lF OVER ;; IMMEDIATE
“WHILE (a--Aa) IF SWAP ;; IMMEDIATE

CRR

;o ABORT" (-- ; <string>)

forth_" abort" >body forth_@ LIT (CALL) HERE !
$,";; IMMEDIATE

8" (- ; <string>)

forth_' $"| >body forth_@ LIT (CALL) HERE !
$,";; IMMEDIATE
(- <string>)

forth_'."| >body forth_@ LIT (CALL) HERE !

$," ;; IMMEDIATE

CRR
" doVAR popr ret
:: CODE (-- ; <string>) TOKEN $,n OVERT align ;;
:: CREATE (--; <string>) CODE
forth_' doVAR >body forth_ @ LIT (CALL) , ;;
:: VARIABLE (-- ; <string>) CREATE O LIT , ;;
:: CONSTANT CODE $A89E LIT,, ;;
:: DOES (--) R> (CALL) LAST @ NAME> ! ;;

EDIATE
EDIATE
EDIATE

ATE

142

Structures

BEGIN Begin a loop structure. Leave address “athefcurrent program wor
on the stack.

THEN Resolve address field in a transfer instrucab“a”.

FOR Assemble a PUSH instruction and leave the addykthe next word
“a” on the stack.

NEXT Assemble a NEXT instruction using target addré&a”.

UNTIL Assemble a BZ instruction using target addr&s’.

AGAIN Assemble a BRA instruction using target addréa”.

IF Assemble a BZ instruction whose address, ‘afeft on the stack.

AHEAD | Assemble a BRA instruction whose address, ileft on the stack.

REPEAT | Assemble a BRA instruction using target addr‘a”. Use the address
of the next program word to resolve the addredd 6éthe branch
instruction at “a”..

AFT Assemble a BZ instruction and leave its adsless“a”,. Replace the
address “a” left by FOR with the address of thet peagram word.

ELSE Assemble a BRA instruction, and use the addoséthe next program
word to resolve the address field of the BZ indinrcin “a”.. Replace
“a”with the address of its BRA instruction.

WHILE | Assemble a BZ instruction and leave its addréa”, on the stack.
Address “a” is swapped to the top of the paramstsek.

Sring Commands

ABORT"

(&)

Compile an error message. This error messageptagied when the to
of the stack is non-zero.

Compile a string literal, which will be displag at run time.

$II

Compile a string literal. When it is executed]y the address of the
string is left on the parameter stack for the rexhmands to access
this string.

Defining Commands

Defining commands are molds to create many comméradshare the same run time

execution behavior.

CODE Create a new primitive command that is intendecontain
machine instructions.
Create a new compound command to compile a tdin$he text
interpreter is switched to compiling mode, whicmdias integer
literals and control structures more gracefully.

CREATE Create a new data array without allocatirgaory.

VARIABLE | Create a new variable, initialized to 0.

CONSTANT | Create an integer constant.

DOES Define the run time execution routine #&omew class of commands

This execution routine follows the DOES command.is similar
to the DOES> command that we used in the assembler.

143

CRR
(makehead) .((-) 29 LIT PARSE TYPE ;; IMMEDIATE
(makehead) \ (--) #TIB @ >IN ! ;; IMMEDIATE
(makehead) (29 LIT PARSE 2DROP ;; IMMEDIATE
(makehead) IMMEDIATE $80 LIT LAST +! ;;

CRR

(makehead) EXIT popr pops ret

(makehead) EXECUTE pushr ret

(makehead) ! sta st ret

(makehead) @ sta Id ret

(makehead) R> popr sta popr Ida pushr ret
(makehead) R@ popr sta popr pushs pushr Ida pushr r
(makehead) >R popr sta pushr Ida pushr ret

(makehead) SWAP
pushr sta popr Ida ret

(makehead) OVER
pushr pushs sta popr
Ida ret

(makehead) 2DROP
pops pops ret

(makehead) + add ret
(makehead) NOT com ret
(makehead) NEGATE

com 1 |di add ret
(makehead) 1-

-1 Idi add ret
(makehead) 1+

1 |di add ret

et

144

M akehead Commands

(makeHead) compiles only a header in the targeiodiary and such commands are
invisible to the metacompiler. In contrast, th& tommand compiles a header in
the target dictionary and a header in the metadempind the command thus defined
will compile itself to the target dictionary whealbsequently invoked. After
(makehead) commands are defined in the targebdenty, they can still be used in
the metacompiler as usual.

(Display the following string, delimited by).
\ Start a comment. Ignore all characters until @nlihe.
(Start a comment. Ignore the following stringliméed by).
IMMEDIATE | Set the immediate bit in theame field of the last defined commar
Such a command will be executed, not compiledpmpaling
mode.

Redefine Macro Commands

A set of macro commands were defined in eP16 adsemobproduce optimized code
in the eForth system. These commands are alsedeéedhe target system. Here
they are re-defined as primitive commands for thé6etarget system. In the eForth
target, they will be compiled as a subroutine wéthout optimization. To produce
optimized code for the target, we need an optingizissembler for the target. It was
so implemented in one of our earlier eP16 systams was fairly complicated. We
decide to leave it out for this XP2 FPGA impleméiota

Command | Function

EXIT Return from subroutine
EXECUTE | Jump to address

! Store integer to address

@ Fetch integer from address

R> Pop from return stack

R@ Copy top of return stack

>R Push on return stack

SWAP Exchange top two integers on stack
OVER Duplicate second integer on stack
2DROP Discard two integers off stack

+ Add top two integers on stack
NOT Complement top of stack
NEGATE Negate top of stack

1- Add -1 to top of stack

1+ Add 1 to top of stack

145

(makehead) BL
20 Idi ret
(makehead) +!
sta Id add st
ret
(makehead) -
com add 1 Idi add
ret
(makehead) OR
com pushr com
popr and com ret
(makehead) ROT
pushr pushr sta popr
popr Ida ret
(makehead) 2DUP
pushs pushr pushr
pushs sta popr Ida popr
ret
(makehead) 2!
sta pushr stp
popr st ret
(makehead) 2@
sta ldp Id ret
(makehead) COUNT
sta Idp pushr Ida
popr ret

(makehead) DUP pushs ret
(makehead) DROP pops ret
(makehead) AND and ret
(makehead) XOR xor ret
(makehead) INVERT com ret

CRR
h forth @

0 org COLD
0# 0#, 0#,

$24 org
$A0 #,
0A #,
lasth forth_ @ #,
#,
lasth forth_ @ #,
forth_' SINTERPRET >body forth_@ #,
forth_' QUIT >body forth_ @ #,
0#,
0#,
lasth forth_@ #,

146

BL Return $20

+! Add second integer to address on top of stack

- Subtract top of stack from second integer

OR OR top two integers on stack

ROT Rotate third integer to top of stack

2DUP Duplicate top two integers on stack

2! Store second and third integers as a doubdgantto the address on
top of stack

2@ Fetch double integer from address on top cksta

COUNT Read contents from address on top of siackement address

DUP Duplicate top of stack

DROP Discard top of stack

AND AND top two integers on stack

XOR XOR top two integers on stack

COM 1's Complement of top of stack

Initialize System Variables

When the eP16 powers up, the P register is cléar@dso we have to have some
valid machine instruction at address 0 to boothegpeP16. The eForth boot up
routine is the command COLD. Therefore, in memocgation 0, we assemble a
JMP COLD instruction.

Memory locations 1-$1F contain an interrupt vet¢édnle for interrupt services.
However, no interrupt is expected in this eP16esysiand this area is cleared to O.
System variables are in the area between $20 and $hey contain vital

information for the eP16 eForth system to work grop Only the following system

variables have to be initialized:

System Address | Initial | Function

Variable Value

'TIB $24 $A0 Pointer to Terminal Input Buffer.

BASE $25 $0A Number base for numeric conversions.

CONTEXT | $26 $9E9 | Pointer to name field of last command in
dictionary.

CP $27 $9EE | Pointer to top of dictionary, firstefremory
location to add new commands. It is saved by ["
forth_@" on top of the source code page.

LAST $28 $9E9 | Pointer to name field of last command

'EVAL $29 $599 | Execution vector of text interprefeitialized to
point to SINTERPRET. It may be changed to
point to $COMPILE in compiling mode.

'ABORT $2A $5D6 | Pointer to QUIT command to handiee
conditions.

tmp $2B $0 Scratch pad.

cpi $2C $0 Instruction slot counter for assembler.

cpw $2D $9E9 | Pointer to top of dictionary, firsteérmemory
location to assemble machine instructions.

147

6.6 eP16 Simulator

An accurate and fast logic simulator is extremellgble in designing and testing a
new CPU. Itis also very useful in separating hend and software development,
so that hardware and software can be developedtameously. This eP16
simulator served me well in the process of develgphe eP16 CPU and its
associated eForth system simultaneously.

This eP16 simulator faithfully replicates the logehavior of the eP16 CPU on a
cycle-by- cycle basis. The eP16 CPU is composedseft of registers and two
stacks. The registers and stacks latch input Egmathe rising edge of the master
clock. Itis very simple to simulate this behavigically in software.

The adder in the eP16 produces a 16-bit sum aadpluit. To allow maximal
programming flexibility, the carry bit must be peeged in all registers and on stacks.
Each register and all stack elements are represegtavo 16-bit words. The first
word contains the current value of the registed, #v@ second word contains the carry
bit associated with this value.

A large array, REGISTER, is opened to host theskiBidtegers. It is divided in
two banks: a FROM bank and a TO bank. The FROM locantains current values
of all registers and all stack elements. A macims&uction takes data in the
FROM bank, modifies them, and writes updated datathe TO bank. The rising
edge of the master clock copies the TO bank t&-B@M bank, and thus simulates a
machine instruction. Multiplexers in the eP16 m@aced by FORTH words that
perform logic functions and compute values fromEROM bank and store results
into the TO bank.

The Slot Machine, which fetches a program word fraemory, and executes 3
machine instructions in this word, is simulatedaby6-bit counter. The least
significant 2 bits in this counter steps througttsD to 3 in 4 clock cycles. Then
this 2-bit field is cleared to zero and the uppéibit field is incremented. Therefore,
the upper 14-bit field in this counter gives anuaeate program word count.

The most interesting feature of this eP16 simuletdinat it vectors KEY and EMIT
commands to equivalent Windows functions “get” gmat”, so that the simulator can
actually run eP16 eForth interactively on a Wind®@ and produces identical
outputs as an actual eP16 microcontroller wouldwa terminal. The simulator
was proven to run identically to an actual eP16rationtroller. This simulator can
be used for software development, in place of balea6 microcontroller.

The source code of this simulator is in SIM16R.E.is loaded at the end of
META16R.F, which builds an eP16 eForth system immy array “ram”. The
simulator reads program words from this array aretetes instructions contained in
these program words.

148

HEX
903E forth_' KEY >body forth_@ ram!
9C3E forth_' EMIT >body forth_@ ram!

forth_forget h
DECIMAL

$1F CONSTANT LIMIT (stack depth)

$1FFF CONSTANT RANGE (program memory size in words
VARIABLE CLOCK (slot is in the last 3 bits)

VARIABLE (REGISTER) (where registers and stacks ar
VARIABLE BREAK

: REGISTER (REGISTER) @ ;
: FROM PAD (REGISTER) ! ;
: TO PAD $600 + (REGISTER) !;

:P REGISTER;

.1 REGISTER 4 +;

111 REGISTER 8 +;

112 REGISTER 9 +;

113 REGISTER 10 +;

114 REGISTER 11 +;

115 REGISTER 12 +;

:RP REGISTER 13 +;

:SP REGISTER 14 +;

: T REGISTER 16 +;

R REGISTER 24 +;

A REGISTER 32 +;

:S REGISTER 56 +;

: RSTACK RP C@ LIMIT AND 4 * REGISTER + $100 +;
: SSTACK SP C@ LIMIT AND 4 * REGISTER + $200 + ;

: CYCLE TO P FROM P $600 CMOVE 1 CLOCK +!;
: JUMP CLOCK @ 3 OR CLOCK !';

: RPUSH (d --, push d on return stack)
FROMR @ RP C@ 1 + LIMIT AND TO RP C! RSTAC

: RPOPP (--d, pop d from return stack)
FROMR @ RSTACK @ RPC@ 1 - LIMIT AND TO RP

: SPUSH (d --, push d on parameter stack)
FROMS @ SP C@ 1 + LIMIT AND TO SP C! SSTAC
FROMT@ TO S'!
TOT!;

: SPOPP (-- d, pop d from parameter stack)
FROMT @
FROMS@TOT!
FROM SSTACK @ SPC@ 1 - LIMIT AND TO SP C!

KIR!;

CIR!;

149

The KEY and EMIT commands in the target eP16 systepatched so that eForth
accepts characters from a PC keyboard and sendsctéra to the weFORTH console
window on the PC screen. We add two machine iastmos in the simulator:
Instruction “get” (code $3E) receives a charaatemfthe PC and instruction “put”
(code $3F) sends a character to the PC. Progranh$203E contains these machine
instructions: get/ret/nop, and is patched intodbae field of KEY. Program word
$9C3Econtains these machine instructions: put/ret/aop,is patched into code field
of EMIT.

Once the KEY and EMIT commands are patched to dovakgnt Windows functions,
this simulator can actually run the eP16 eFortaradtively, and it produces identical
output as actual eP16 microcontroller would do éoeraninal.

“forth_forget h” truncates the eForth dictionaryckdo where “h” was defined. It
thus deletes words defined in the metacompileerabter, kernel, and target eP16.
eForth is cleaned to a pristine state to host aapglication, which is the eP16
simulator.

To manipulate double integers representing a vialuegisters and stacks, we need a
set of ALU commands operating on double integers:

Command Function

LIMIT Limit stacks depths are 256 levels.

RANGE Limit program size to 32kB, the size of tRAM’ array

CLOCK A variable that has a 29-bit program wordmiofield and a 3-bit

SLOT field. The SLOT field sequences program wetdh and
execution of up to 5 instructions in the progranravo

BREAK A variable holding breakpoint address.

(REGISTER)| A variable pointing either to the FROM bank or e fTO bank.
FROM Switch register array to the FROM bank.

TO Switch register array to the TO bank.

REGISTER | Base address of registers and stack arrays.

The eP16 CPU is paced by a single master clockgiskes, stacks, and memory
contents are latched on the rising edge of theenakick. This latching action must
be simulated accurately. The eP16 Simulator wgesdgister arrays, a FROM bank
and a TO bank. Logic circuitry takes data from FROM array and operates on
them according to the current machine instructaog stores results in the TO array.
The rising edge of the master clock is simulateddgyying the contents of the TO
array to the FROM array, and then the system @yréar actions in the next clock
cycle.

150

Registers and stacks are defined as pointers pgiirtto the REGISTER array:

Register Function

Program counter

Accumulator, top item on parameter stagk

Top of return stack

Address register

P

T

S Second item on parameter stack
R

A

I

Instruction latch

11 Machine instruction in slotl
12 Machine instruction in slot2
13 Machine instruction in slot3
RP Return stack pointer

SP Parameter stack pointer

RSTACKO Origin of return stack

SSTACKO Origin of parameter stack

RSTACK Address of top of return stack

SSTACK Address of top of parameter stack

The Slot Machine paces the simulator through eR4#uctions stored in ‘ram’
memory, just like the real eP16 CPU would do. dadtof using a single phase clock
as master clock, we use a CLOCK variable as safraenultiple phase clock. The
lowest two bits in CLOCK, Slot Counter, runs thetslin the slot machine. Its value
indicates which slot is currently running. If$t@, SlotO is executed. Ifitis 1,
Slotl is executed. Etc. On the rising edge ofntlaster clock, this slot counter is
incremented. When slot count is 3, Slot3 is exataind the slot counter is reset to
0, so that next time SlotO is executed.

JUMP also clears the Slot Counter to 0. JUMP eslusy all transfer instructions to
force the slot machine to enter slotO on the rigidge of the next clock.

Command Function

CYCLE Simulate rising edge of master clock by imeemting CLOCK.

JUMP Fetch next program word by forcing a 3 intot&ounter in CLOCK. Or
the rising edge of the master clock, CLOCK is inceated and clears
Slot Counter to 0. The upper 14-bit field in CLO@Kincremented,

indicating that a new word is fetched from memaiyus the upper 14
bits in CLOCK keeps an accurate count of eP16 wiiraishave been
executed.

RPUSH Push double integer d on return stack.

RPOPP Pop return stack and leave double integeysiam stack.

SPUSH Push double integer d on parameter stack.

SPOPP Pop parameter stack and leave double imiegsistem stack.

151

;call FROM P @ RPUSH | @ TO RANGE AND P!
JUMP ;

: continue
FROM P @ DUP 1+ TO RANGE AND P !
ram@ DUP $FFFF AND | !
$20 /MOD SWAP I3 C!
$20 /MOD SWAP |2 C!
$1F AND I1 C!

:nop JUMP ;

el

di

:bra FROM | @ $3FF AND

P @ $FC00 AND + TO RANGE AND P ! JUMP ;

: ret RPOPP TO RANGE AND P !

JUMP ;

:bc SPOPP $10000 AND (branch on carry)

IF bra ELSE JUMP THEN ;

: bz SPOPP $FFFF AND (branch on zero)

IF JUMP ELSE bra THEN ;

: next FROM R @ $FFFF AND

IF ELSE RPOPP DROP JUMP EXIT THEN (exit lo
FROMR @ 1- TOR ! (decrementR)

bra ;

: times FROM R @ $FFFF AND

IF ELSE RPOPP DROP JUMP EXIT THEN (exit lo
FROMR @ 1- TOR ! (decrement R)

FROM-1P +I TO-1P +!;

: pushr SPOPP RPUSH ;

: dupr FROM R @ SPUSH ;

: popr RPOPP SPUSH ;

:andd SPOPPTOT@AND T!;

:xorr SPOPPTOT@ XORT!;

:com FROMT@ -1 XORTOT!;

:add SPOPP $FFFFAND TOT @ $FFFFAND + TO T !;
:mul FROM A @ 1 AND

IFS @ $FFFF AND T @ $FFFF AND +

ELSE T @ $FFFF AND THEN

DUP2/TOT!

1 AND >R

FROM A @ 2/ $7FFF AND R> IF $8000 OR THEN T
:div FROM S @ $FFFF AND T @ $FFFF AND +
DUP >R DUP $10000 AND

IF ELSE DROP T @ THEN $7FFF AND

2* (diff) A @ $8000 AND IF 1+ THEN TO T !
FROM A @ $7FFFF AND 2* R> $10000 AND IF 1+
:shr FROMT @ $8000 AND T @ $FFFFAND 2/+TO T
:shl FROMT @ 2* $1IFFFFAND TO T !;

;8 FROM T @ $100 * $FF00 AND T @ $100 / $FF AN
:ldi FROMP @ 1+ TO RANGE AND P !

FROM P @ RANGE AND ram@ SPUSH ;

: pushs FROM T @ SPUSH ;

:lda FROM A @ SPUSH ;

: pops SPOPP DROP ;

:overr FROM S @ SPUSH ;

op)

op)

OA!;

THENTOA!;
I.

D+TOT!;

152

“continue” simulates functions performed in slatGhe Slot Machine, which fetches
the next program word from memory and stores imgtruction register I. Machine
instructions in slotl to slot3 are extracted torapea decoder, which generates
control signals for all components in the eP16.

“continue” also increments the P register, and e®pnachine instructions in slotl to
slot3 to instruction registers 11-13.

To execute a machine instruction, the simulatoesaturrent values in registers and
stacks in the FROM bank, computes desired new saarel deposits them back in
registers and stacks in the TO bank. On the risdgge of the master clock, which is
simulated by command CYCLE, the contents of theb®@k are copied to the FROM
bank. Machine instructions are defined as commantss simulator, and they read
values in the FROM bank, make necessary changeéstare new values in the TO
bank.

As registers and stacks are represented in douotglgdars, math operations are
performed using 32-bit double integer math commamageForth.

call Push address in P on R stack, and jumpdoead contained in current
instruction; else continue.

nop No operation.

ei Enable interrupt.

di Disable interrupt.

bra Jump to address contained in current ingtrict

ret Return from a subroutine to main program. Rprn address from
return stack and store it in P.

bn If T<O is set, jump to address contained iment instruction; else
continue.

bc If Carry is set, jump to address containecuiment instruction; else
continue.

bz If T=0, jump to address contained in currastnuction; else continue

next If R is not 0, jJump to address containedurrent instruction, and
decrement R by 1; else pop R stack and continue.

times Micro loop. Similar to “next”, except repieg instructions in current
program word.

pushr Push T onto R stack. Pop S stack to T.

dupr Push T onto S stack. Dup Rto T.

popr Push T onto S stack. Pop R stack to T.

andd Pop S stack and AND it to T.

xorr Pop S stack and XOR itto T.

com Complement T (1's complement).

153

:sta SPOPPTOA!;
:ld FROM A @ RANGE AND ram@ SPUSH ;
:ldp Id
FROM A @ 1+ $1FFFF AND TO A !;
:ldrp FROM R @ RANGE AND ram@ SPUSH
FROMR @ 1+ $1FFFFAND TOR!;
:st SPOPP FROM A @ RANGE AND ram! ;
. stp st
FROM A @ 1+ $1FFFFAND TO A ! ;
. strp SPOPP FROM R @ RANGE AND ram!
FROMR @ 1+ $1FFFFAND TOR!;
. get KEY DUP $1B = ABORT" done"
SPUSH ret ;
: put SPOPP $7F AND EMIT ret ;

HEX

: execute (code --)
DUP 00 = IF DROP bra EXIT THEN
DUP 01 = IF DROP ret EXIT THEN
DUP 02 = IF DROP bz EXIT THEN
DUP 03 = IF DROP bc EXIT THEN

\ DUP 04 = IF DROP call EXIT THEN
DUP 05 = IF DROP next EXIT THEN
DUP 06 = IF DROP times EXIT THEN

\ DUP 07 =IF DROP di EXIT THEN

\ DUP 08 = IF DROP Idrp EXIT THEN
DUP 09 = IF DROP Idp EXIT THEN
DUP 0OA = IF DROP Idi EXIT THEN
DUP 0B = IF DROP Id EXIT THEN

\ DUP 0OC = IF DROP strp EXIT THEN
DUP 0D = IF DROP stp EXIT THEN
DUP OE = IF DROP rr8 EXIT THEN
DUP OF = IF DROP st EXIT THEN
DUP 10 = IF DROP com EXIT THEN
DUP 11 = IF DROP shl EXIT THEN
DUP 12 = IF DROP shr EXIT THEN
DUP 13 = IF DROP mul EXIT THEN
DUP 14 = IF DROP xorr EXIT THEN
DUP 15 = IF DROP andd EXIT THEN
DUP 16 = IF DROP div EXIT THEN
DUP 17 = IF DROP add EXIT THEN
DUP 18 = IF DROP popr EXIT THEN
DUP 19 = IF DROP Ida EXIT THEN
DUP 1A = IF DROP pushs EXIT THEN
DUP 1B = IF DROP overr EXIT THEN
DUP 1C = IF DROP pushr EXIT THEN
DUP 1D = IF DROP sta EXIT THEN
DUP 1E = IF DROP nop EXIT THEN
DUP 1F = IF DROP pops EXIT THEN
DUP 04 = IF DROP get EXIT THEN
DUP 07 = IF DROP put EXIT THEN
. ABORT" :lllegel instruction” ;

154

addd Pop S stack and add it to T.

mul Multiplication step. If A(0)=1, add S to Ttherwise T is not changed.,
Shift T:A pair right by 1 bit.

div Division step. If T+S produces a carry, adtb S, otherwise T is not
changed. Shift T:A pair left by 1 bit. Shift cainto A(0O).

shr Shift T right by 1 bit.

shl Shift T left by 1 bit.

8 Rotate T right by 8 bits.

Idi Push T on S stack, read memory word pointe® mto T. Increment P
by 1.

pushs Push T on S stack.

xt Push T on S stack. Copy Ato T.

pops Pop S stack to T.

overr Push T on S stack. Copy original contehS o T.

tx Copy Tto A. Pop S stack to T.

ldx Push T on S stack, read memory word pointed imto T.

ldxp Push T on S stack, read memory word poibteA into T. Increment
Aby 1.

Idrp Push T on S stack, read memory word poibteR into T. Increment
R by 1.

stx Store T into memory pointed by A. Pop S stack.

stxp Store T into memory pointed by A. Increm@itly 1. Pop S stack to T].

strp Store T into memory pointed by R. Increment R bi2dp S stack to T]

We want the simulator to run the eP16 eForth systeflme real eP16 microcontroller
talks to a host computer through a UART serial poiormally we use
HyperTerminal in Windows to interact with the eP1@.0 simulate interaction
between the eP16 and HyperTerminal, we have tokhijae output of EMIT and send
it to the weFORTH console window, and interceptdaard strokes from the
computer keyboard and feed them to KEY in eForfhihese two functions are
implemented in the simulator by creating two spaniachine instructions, “get” and
“put”, which use machine codes $04 and $07, respyt

“get” and “put” are patched into the code fieldk@&Y and EMIT in the memory
array “ram” so that when the simulator executes EMIcharacter is displayed on the
weFORTH console, and when KEY is executed, an ASkdracter is accepted from
the keyboard. With “get” and “put”, the simulatons the eP16 eForth system
identically like the eP16-HyperTerminal system.

get Force simulator to get a character from kegdoader Windows.

put Force simulator to send a character to weFORI$ole window.

155

..stack (add#) FORAFTDUP @ $1FFFFAND . 4-T
..sstack " S:" T @ $1FFFF AND U.

S @ $1FFFF AND U. SSTACK SP C@ .stack ;
. .rstack " R:"R @ $1FFFF AND U. RSTACK RP C@ .st
c.amA"A@ $1IFFFF AND U.
.registers "P="P@.." I="1 @ U.

JE"I11C@ . 12="12 C@ .

MI3="I13C@ . .aCR;
;S ."CLOCK="CLOCK @ . .registers

.sstack .rstack ;

: sync CLOCK @ 3 AND
DUP 0 =IF continue
DROP EXIT
THEN
DUP1=IF | @ $8000 AND
IF 11 C@ execute DROP EXI
ELSE call DROP EXIT THEN
THEN
DUP 2 =IF 12 C@ execute DROP EXIT
THEN
DUP 3 =IF I3 C@ execute DROP EXIT
THEN
DROP JUMP ;
:C syncCYCLES;
: reset FROM P $C00 O FILL 0 CLOCK ! ;
reset

:G (addr--)
CR ." Press any key to stop." CR
BREAK!
BEGIN sync P @ BREAK @ =
IF CYCLE C EXIT
ELSE CYCLE
THEN
?KEY
UNTIL ;
:PUSH (n) pushs TOT!;
: POP pops;

:D P @ 1- four four ;
:M show;
:RUN CR ." Press ESC to stop." CR
BEGIN C KEY 1B = UNTIL ;
: P DUP FROM RANGE AND P! TO RANGE AND P !;

: HELP CR ." eP16 Simulator, copyright eForth Grou
CR ." C: execute next cycle"
CR ." S: show all registers"
CR ." D: display next 8 words"
CR ." addr M: display 128 words from addr"
CR ." addr P: start execution at addr"
CR ." addr G: run and stop at addr"
CR ." RUN: execute, one key per cycle"
CR;

HEN NEXT DROP CR;

ack ;

p, 2002"

156

“execute” is a giant case statement that gets “cfvde the top of the stack and
selects the proper commands to simulate a machstieiction in this simulator.

Since weForth did not bother to define case stracnd associated control
commands, we just use lots of IF-THEN structuresirnaulate a case structure.
“code” is duplicated on the stack and compared wathsecutive machine code. If a
match is found, the corresponding command is eredat simulate that machine
instruction. After that, EXIT is executed, and éexte” is terminated. Further
comparisons are not necessatry.

If “code” does not match a valid machine code, aeeha very serious problem.
Either the eP16 target image has a bug, or the sifllBator has a bug. This
simulator is aborted. The offending “code” is désed with an error message.
The eForth system returns to its default text preter, and you can type in eForth
commands to find and correct this bug.

Here are the commands that run the Slot Machirgshaw the contents of pertinent
registers and stacks. Originally, | thought of lementing a set of break points to
allow user the freedom to break execution at a rexrabdifferent memory locations.
Eventually, | realized that only one break poimézessary and a simple ‘GO’
command is sufficient. This is the G command shoglow.

Command Function

.stack Display the contents of a stack.

.sstack Display the contents of parameter stack.

rstack Display the contents of return stack.

registers | Display the contents of all the relevant registers.

S Show all the registers and stacks at this cycle.

sync Execute the current machine instruction ueb@CK to determine

which slot is being executed. CLOCK points to ohé&e routines in
SYNC-TABLE, which contains the following entries:

CONTINUE, fetch next program word

SYNC1, execute instruction in 11

SYNC2, execute instruction in 12

SYNC3, execute instruction in 13

C Run one clock cycle and display all registers stadks.

reset Clear the REGISTER array, simulating hardweset.

“C” is the single stepper in simulator. It rung t8lot Machine for one cycle, and
displays all registers and stacks. This is thetmssful command to debug the eP16
in the early development stage. You can see &lidaall registers and stacks. In
the eP16 eForth system, the first command exetsit€®LD, which executes a
diagnostic word, DIAGNOSE. DIAGNOSE runs simplstseon most machine
instructions. By single stepping through DIAGNO$Bu can validate most
machine instructions. If all tests in DIAGNOSE msurccessfully, it is very likely the
eP16 will run correctly in the FPGA.

“reset” clears the REGISTER array, and initialifes simulator to run starting at
memory location 0.

157

This simulator has a very simple text-based uderfece. The most useful
commands are:

Command Stack Function
Effects

G - Run and stop at address given on FORTH stdk.is a
very efficient way to set breakpoints and thentiliia
breakpoint is triggered. It allows the user tocxe a
large portion of the program and stop only at asieel
location.

PUSH n-- Push a new integer into the T registdr@arameter stack.

POP - Discard contents in T and pop parametek &tack into
T

-- Display memory starting at address in P.

UN -- Continue stepping with any key, terminatgcdH5C.

D
M a-- Dump 128 words in memory using “show” comman
R
P

a-- Start simulating at the address on stack.

This simulator is most effective in debugging sksaguences of program words to
verify that the sequences are executed correcifter eP16 machine instructions are
verified, use the G command to execute a longctret program and break only at a
specified location. This allows large segmentprofyrams to be tested. If the
simulator runs forever and cannot reach the break gou specified, you can stop
the G command by hitting the ESC key on the keyihtaterminate it.

When weForth runs the metacompiler to compile arthRarget image for the eP16,
it displays the names and code field addressel @dramands compiled into the
target image. The display is a symbol table. ¥aw look up a command and find
its code field address. The code field addressetha best place to set your break
point. To debug a command, find its code fieldradd and enter it with the G
command. The simulator will break at the beginrohthis command, and you can
use the C command to single step through it.

Typing lots of “C” commands is tedious. The RUNroonand lessens your typing
chore. After executing RUN, the simulator displaggisters and stacks and pauses.
Pressing any key will single step the Slot MacHoreone more cycle. You can run
many steps easily this way. When you want to RO, press the ESC key.

To examine memory, type an address followed byMiecommand. It will display
128 words of memory starting from that address. e ' command displays 8
program words starting at this address.

If you want to start debugging at a particular &ddr type the address followed by the
“P” command. This address is stored in the progtaomter register, P, and “C” or
“RUN” commands will single step words starting lsistmemory address.

If you want to change the parameter stack to romukition with the data you want on
the stack, use “PUSH” and “POP” commands. Typarmalrer followed by “PUSH”,

and this number is pushed on the parameter statieisimulator. You can enter as
many numbers on stack as you like in this way.yolf want to pop a number off the

158

parameter stack, type “POP”.

The above commands allow you to set up the ePilteisimulator exactly the way
you want before running simulation.

The HELP command displays a help screen to remooidoy simulation commands
and arguments they need on the parameter stack.

HELP

eP16 Simulator, copyright eForth Group, 2002
C: execute next cycle

S: show all registers

D: display next 8 words

addr M: display 128 words from addr

addr P: start execution at addr

addr G: run and stop at addr

RUN: execute, one key per cycle

159

Conclusion

In early 1990's, when | worked with Chuck Mooretbe MuP21 chip, he was
daydreaming one afternoon, and said somethinghike "l wish that | had a machine
like a microwave oven on my kitchen table. | wopld in a piece of silicon and
turn on the power switch. After half a hour, | M@dopen the door, and there is my
chip.”

With LatticeXP2-5E FPGA chip on the Brevia2 Kitrm practising Chuck's dream
now, on my desk.

You can practise Chuck's dream also. You can desid produce your own
microcontroller. You can write your own programigiianguage and operating
system. All you have to do is to sit back, thircdy and find a good application that
you can sell a million chips.

In the FORTH programming language and in the desigri-ORTH microcontrollers,
Chuck Moore reduced computer software and comhatetware to their simplest
forms, which can be understood, reproduced, andowegl by ordinary people like us.
You do not have to be Intel or Microsoft or Appterhake computers, and to solve
your own application problems.

"Yes, we can! Yes, we can! Yes, we can!"

160

Appendix A: eP16 Instruction Set

Here | will present formal definitions of all ePit&tructions. They begin with the
assembly mnemonics and a name, followed by thele casage, stack effects, and

effects on the carry bit. These attributes aregmted in a table. Then there is a
detailed description of the instruction’s functi@miowed by some coding examples.
Usage rows show how an instruction appears in bitgrogram word, using

following notations:

Notation Representation

iiii Current instruction code in binary
cceccece 6 bit instruction code

nnnnn 6 bit data

aaaaa 6 bit address

XXXXX 6 don’t care bits

The stack effect row shows how this instructioretf§ the parameter stack, return

stack, and sometimes the Aregister. Stack efegetshown in the following style:
Items before execution — items after execution

Items are identified using the following notation:

Notation Representation

n a general 16-bit integer

a a 16-bit address

f a logic flag, true=-1, false=0

If an instruction changes the return stack andAthegister, these effects are added to
the parameter stack effects separated by colons:
nNin2-n3n4;R:--n;A:--n

The carry row shows how the carry bit is changethieyinstruction.

Coding examples are often taken from the kerngh@®eForth system in the files
KERN16r.F and EF16R.F. Code fragments are geyeshttwn in machine code
format. Complete definitions of code commandsstu@vn in eForth assembly
format and FORTH compound commands are shown inTFOBrmat. You are
encouraged to read these files and examine thesepeas in their original context.

ADD Addition

Code: 23

Usage Short Instruction

Stack Effects (nln2--nl+n2)

Carry Change according to n1+n2
Function:

Pop S from the parameter stack and add it to tlegiBter.

161

Coding Example:

The primitive addition word in eForth is thus de&fth
CODE UM+ (nn-ncarry)

add pushs

ifnc pushs pushs xor ret

then

1 Idiret
: NEGATE (n---n) com 1 Idi add ;
:1-(a--a)-1lldiadd;
1+ (a--a) lldiadd;
c+l(na--) tx ldx add stx ;
:-(ww--w) comadd 1 Idi add ;

AND BitwiseAND

Code: 21

Usage Short Instruction

Stack Effects (n1n2--n3)

Carry AND of bits n1(16) and n2(16)
Function:

Pop S from the parameter stack and bitwise AND the T register. Al 33 bitsin T
are affected.

Coding Example:

To generate a 0 in the T register:
DUP DUP COM AND
To convert a numeric digit to its corresponding AlSfode:
= DIGIT (u--¢)
9 LIT OVER <7 LIT AND +
(CHARO) 30 LIT +

BC Branch on Carry

Code: 3

Usage 1 00011 aaaaa aaaaa

Stack Effects (n--)

Carry Restored from parameter stack
Function:

Conditionally branch to the 24-bit address in thidield 9-0 in the current 1 K word
page of memory, if the Carry flag (Bit 16 of T)get. It must be in slotl of a
program word. The current value in the T regigatestroyed and the parameter
stack is popped back to T. This instruction i$edént from BRA, which does not

162

change the parameter stack or T.
Coding Example:
The negative flag T(31) is shifted into carry T(1BL compiled by IFNC tests this.
CODE ABS (n -- +n)
pushs shl

ifnc ret then
negate ret

BRA Branch Always

Code: 0

Usage 1 00000 aaaaa aaaaa
Stack Effects None

Carry No change

Function:

Branch to the 24-bit address in bit field 9-0 ie thurrent 1 K word page of memory.
It must be in slotl of a program word. BRAis calegh by ELSE, REPEAT and
AGAIN to construct branch and loop structures.

Restriction:

This instruction allows the program to be redirddit®any location within a 16M
word page of memory. It does not cross page baiesda To jump to locations
outside of a memory page, one has to push a tadgkeéss onto the return stack and
execute the RET instruction to cause a long junmifhis restriction also applies to
CALL, BZ, BC, and NEXT. See also RET.

Coding Example:

To delay 50 or 100 micro seconds:

CODE 50us

2 Idi skip

CODE 100us

1 Idi

then

sta -138 Idi

begin |da add

-until

drop

ret

SKIP compiles an unconditional branch, BRA, to THEMNIet the routine ‘50us’
share a delay loop with the routine ‘100us’.

BZ Branch on Zero

| Code: | 2

163

Usage 1 00010 aaaaa aaaaa

Stack Effects (n--)

Carry Restored from parameter stack
Function:

Conditionally branch to the 24-bit address in thdiéld 9-0 in the current 1 K word
page of memory, if the T register contains a 0.mutst be in slotl of a program
word.

The T register is destroyed and the parameter ssgudpped back to T. This
instruction is different from BRA, which does ndtamge the parameter stack or T.
BZ is compiled by IF, WHILE and UNTIL to construatanch and loop structures.

Coding Example:
CODE ?DUP (w--ww |0)
pushs

if pushs ret then
ret

CALL Call Subroutine

Code: 0

Usage 0 aaaaa aaaaa aaaaa
Stack Effects (--;R:--a)

Carry No change

Function:

Call a subroutine whose address is in bit fieldlia-the current 32 K word page of
memory. It must be in slotl of a program word.

The address of the next program word is pushedtbeteeturn stack. When a
return instruction in a subroutine is encountetieis, address is popped off of the
return stack back to the program counter and tlepregram word is executed to
resume the execution sequence interrupted by th@stine call.

Restriction:

This instruction allows the program to call anysuliine within the current 16M
word page of memory. It does not cross page baigsla

Coding Example:

All compound=ORTH commands are compiled as subroutine callsis i$ the most
efficient way to build program lists in FORTH.

~HERE (--a)CP @ ;;

2 PAD (--a)CP @ 100 LIT + ;;

~TIB(--a)'TIB@ ;;

164

COM Bitwise Complement

Code: 16

Usage Short Instruction

Stack Effects (n=1-n)

Carry Reset to 0Complement of T(16)
Function:

Complement all 33 bits in the T register. It isree’s complement operation.
Coding Example:

To generate a 0 in the T register:

DUP DUP COM AND
To generate a -1 in the T register:

DUP DUP COM XOR
The first step is to make two copies of T. Themogt copy is complemented and
then ANDed or XORed into second copy of T. Allshatre cleared or set, and the
resultisaOora-1inT.

: NOT (w--w) com;
: NEGATE (n---n) com 1 ldi add ;

DIV Divide Step

Code: 22

Usage Short Instruction

Stack Effects (n1ln2--n1n3)

Carry Bit T(31) or Bit 31 from adder
Function:

Conditionally add the S register onto the param&teek to the T register if the carry
bit from additionis 1. If carry is O, the T reggsis not modified. The T-A register
pair is then shifted to the left by one bit. Casghifted into A(0).

This DIV instruction is useful as a divide stepgrigplement a fast software division
routine. Repeating this instruction 33 times willide the T-A pair by S. The
guotient is in A and the remainder is in T.

Coding Example:

Divide a 64-bit positive integer by a positive 3itdivisor. A negated divisor is in S.
The 64-bit dividend is in the T-A register pair.

CODE/MOD (nn--rq)
com 1 Idi add pushr

165

tx popr O Idi
then

div div div div
div div div div
div div div div
div div div div
div div div div
div div div div
div div div div
div div div div
div 1 Idi xor shr
pushr pops popr xt
ret

DROP Discard T Register

Code: 31

Usage Short Instruction

Stack Effects (n--)

Carry Restore from parameter stack
Function:

Pop S from the parameter stack and store it iff thegister. The original contents in
the T register are lost. In assembler, DROP hadias, ‘pops’.

Coding Example:

: DROP (ww --) pops;
: 2DROP (w w --) pops pops ;

DUP Duplicate T Register

Code: 26

Usage Short Instruction
Stack Effects (n--nn)
Carry No change
Function:

Duplicate the T register and push it onto the patanstack. In assembler, DUP
has an alias, ‘pushs’.

Coding Example:

Create 0 in T DUP DUP XOR AND
Create -1 in TDUP DUP XOR COM

Decrement T DUP DUP XOR COM ADD
CODEO<(n-f)

166

shl ifnc pushs pushs xor ret

then

-1 Idi ret
El Enable Interrupts
Code: 6
Usage Short Instruction
Stack Effects None
Carry No change
Function:

Enable external interrupts through the INTERRUPZY(@ins. When the eP16 is
powered up, external interrupts are disabled. rAflds executed, the CPU will
respond to external interrupts. Interrupt pinssaiapled in slot0. If any of the 5
interrupt pins is pulled high, the CPU will forcesabroutine call to an address
between 1 and 31 according to the bit pattern sadnpl INTERRUPT(0-4). Further
interrupts are disabled, until another El is exedut

Before executing El, the system must write validradses of interrupt service
routines into the interrupt vectors from locatidn® 31, so that the system can
respond correctly to simultaneous real time inf@sudrom 5 external devices.

L DI L oad | mmediate

Code: 10

Usage Short Instruction followed by a 16-bit lileralue
Stack Effects (--n)

Carry Reset to O

Function:

Fetch the contents of the next program word antl thet number onto the parameter
stack. The program counter, PC, is incrementeskipg the next program word.
This instruction allows a program to enter numigiterals) onto the parameter stack
at run time. It also resets the carry flag (Bi} it6the T register.

Coding Example:

Push 1 2 3 4 on parameter stack:
LDI LDI LDI LDI
1
2
3
4
CODE =(ww--1)
Xor
if pushs pushs xor ret then

167

-1 Idi ret

LD Load from A Register

Code: 11

Usage Short Instruction
Stack Effects (--n)

Carry Reset to O
Function:

Fetch the contents of a memory location whose fL&duress is in the A register and
push that number onto the parameter stack. Theesslth the A register is not
modified.

This fetch instruction is different from the @ ingttion in FORTH, which uses the
address on top of the parameter stack.

This instruction also resets the carry flag (Bi} it6the T register.

Coding Example:

'@ (a-n)txldx;

2@ (a--d) tx ldxp ldx ;

L DA Push A Register to T
Code: 25

Usage Short Instruction
Stack Effects (--a)

Carry Restore from A
Function:

Copy the contents of the A register to the T regist The original contents in the T
register are pushed onto the parameter stack. tWéthDA and STA instructions,
the A register can serve as a scratch pad to sal/esatore the contents of the T
register.

Coding Example:
:SWAP (n1ln2-n2nl)
pushr sta popr Ida ;
:ROT (w1l w2w3--w2w3wl)

pushr pushr sta popr
popr lda ;

LDP Load from A Register, Auto-l ncrementing

168

Code: 9

Usage Short Instruction
Stack Effects (--n;Ara—atl)
Carry resetto 0
Function:

Fetch the contents of a memory location whose fL&duress is in the A register and
push that number onto the parameter stack. Theesslth the A register is then
incremented to facilitate accessing the next meromgtion. It is most useful in
reading values from an array in memory.

This fetch instruction is different from the @ ingttion in FORTH, which uses the
address on top of the parameter stack.

This instruction also resets the carry flag (Bi} it6the T register.
Coding Example:
2@ (a--d) txldxp ldx;

MUL Multiply Step

Code: 19

Usage Short Instruction

Stack Effects (n1ln2—1lohi)

Carry Reset to 0Change to T(31) or sum(31)
Function:

Conditionally add the S register on the paramedtarksto the T register if the lowest
bit in the A register, A(0), is 1. If A(O) is (he T register is not modified. The T-A
register pair is then shifted to the right by oite b

This MUL instruction is useful as a multiply stepimplementing a fast software
multiplication routine. Repeating this instructib@ times will multiply A and S and
produces a 64-bit product in the T-A register paif.the T register is not initialized
to 0, its contents are added to the product.

Coding Example:
Multiply two 16-bit unsigned integers. Multiplicdns in A. Multiplier is in S.

CODE UM* (uu--ud)
tx O Idi
mul mul mul mul
mul mul mul mul
mul mul mul mul
mul mul mul mul
pushr pops xt popr

169

ret
The 16-bit product is in the T-A register pair. €limultiplicand in S is preserved.

NEXT Loop Back

Code: 5

Usage 1 00101 aaaaa aaaaa

Stack Effects (--;Rin—=n-1lifnisnot 0, mfA=0)
Carry No change

Function:

If the top of the return stack, R, is not zero,dao the 24-bit address in bit field 9-0
in the current 1 K word page of memory. R is dewmeted by 1. If Ris O, pop the
return stack, terminate the loop, and continue @&tkag the next program word. It
must be in slotl of a program word. NEXT is rehdedl in assembler to terminate a
loop structure by assembling a NEXT instruction.

Coding Example:

>CMOVE (bbu--)
FOR AFT
over c@ over c!
>R 1+ R> 1+
THEN NEXT 2DROP ;;
~FILL (buc--)
SWAP FOR SWAP AFT
2DUP c! 1+
THEN NEXT 2DROP ;;

NOP No Operation

Code: 30

Usage Short Instruction
Stack Effects (-)

Carry No change
Function:

No operation. This instruction forces the exeaqusequencer to state slot0, and
causes the next program word to be fetched anduteakc All instructions in the
current program word following NOP are ignored. aksembler, NOP is
automatically padded into a program word to filusad slots.

OVER Duplicate S Register

Code: 27
Usage Short Instruction
Stack Effects (nln2—-nl1n2nl)

170

| Carry | Restore from S register

Function:

Push the T register onto the parameter stack. @uwpgriginal contents of Sto T.

Coding Example:

:: 2DUP OVER OVER :;

POP Pop Return Stack

Code: 24

Usage Short Instruction

Stack Effects (--n;R:n--)

Carry Restore from return stack
Function:

Pop the R register on the return stack to the iBteg The original contents in T are

pushed onto the parameter stack.
Coding Example:

ExchangingAand T STA PUSH LDA POP
ExchangingAand R STA POP LDA PUSH
Increment T by 4 STA LDP DROP LDA
Decrement T by 4 DUP DUP XOR COM ADD
>CMOVE (bbu--)

FOR AFT over c@ over c!

>R 1+ R> 1+
THEN NEXT 2DROP ;;

PUSH Push Return Sack

Code: 28

Usage Short Instruction

Stack Effects (n--;R:--n)

Carry Restore from parameter stack
Function:

Pop S from the parameter stack and store it t@ ttegjister.

the T register are pushed onto the return stack.
Coding Example:

: 2DUP (w1 w2 -- wl w2 wlw2)
over over

171

The original contents in

' ROT (w1 w2 w3 - w2 w3 wl)
pushr pushr tx popr
popr xt ;

RET Return from Subroutine

Code: 1

Usage Short Instruction
Stack Effects (-;Rra--)
Carry No change
Function:

Pop the top of the return stack into the prograomeer, P, and thus resume the
execution sequence interrupted by the last CALtruasion. Besides terminating a
subroutine, this instruction may be used to exeautsg jump to a location outside
of the current memory page. This instruction camplaced in any slot of a word.
Instructions before RET are executed. Instructiollewing RET are ignored.

Coding Example:

In the Subroutine Threading Model, RET is usecttminal all code commands and
colon commands. The word “;” simply compiles a RBTerminate a FORTH
word.

CODEO< (n-f)
shl ifnc pushs pushs xor ret

then -1 Idi ret
CODE UM+ (nn-ncarry)

add pushs

ifnc pushs pushs xor ret

then 1 Idi ret
RR8 Rotate Right by 8 Bits
Code: 14
Usage Short Instruction
Stack Effects (nl-n2)
Carry No change
Function:

Rotate T to the right by 8 bits. The lowest 8 laits moved to the highest 8 bits.
This instruction is very useful in extracting byfesm a 16-bit integer in the T
register, and to pack bytes into T.

Coding Example:

172

- wupper (w -- w') \ convert 4 bytes to uppercas e
3 LIT FOR
DUP FF LIT AND 61 LIT 7B LIT WITHIN
IF FFFFFF5F LIT AND THEN

RR8

NEXT
SHL Shift L eft
Code: 17
Usage Short Instruction
Stack Effects (n--2n)
Carry Change to T(31)
Function:

Shift all lower 16 bits in the T register to lefg kb bit. The lowest Bit, T(0), is set
to 0.

Coding Example:

Multiply T by 3: DUP SHL NOP NOP ADD
Multiply by 5: DUP SHL SHL DOP ADD
Multiply by 6: SHL DUP SHL NOP ADD

SHL allows the negative bit, T(31), to be testedha&scarry bit T(16):
CODE CELL* SHL SHL RET
CODEO< (n-f)

SHL

-IF -1 LDI RET

THEN

DUP XOR (0 LDI)

RET

SHR Shift Right
Code: 18

Usage Short Instruction
Stack Effects (n--n/2)
Carry Reset to O
Function:

Shift the lower 16 bits in the T register rightdaye bit. Bit T(0) is lost. The sign
bit, T(31), is preserved. The carry bit, T(16)clsared.

Coding Example:

173

CODE 4/ SHR SHR RET

ST Sorewith A Register

Code: 15

Usage Short Instruction

Stack Effects (n--)

Carry Restore from parameter stack
Function:

Store T into the memory location whose 16-bit adslis in the A register. Pop the
parameter stack. The address in the A registastisnodified.

This store instruction is different from the “!"dtruction in FORTH, which uses an
address on top of the parameter stack.

Coding Example:

:I'(na--)stast;
: 2! (d a--) sta pushr stp popr st ;

STP Sorewith A Register, Auto-l ncrementing
Code: 13

Usage Short Instruction

Stack Effects (n--;Ata—atl)

Carry Restore from parameter stack

Function:

Store T into the memory location whose 16-bit adslis in the A register. Pop the
parameter stack. The address in the A registéeisincremented by 1 to facilitate
the next memory access. It is most useful insgpvialues to an array in memory.
Coding Example:

See the copying program shown in LDXP.

: 2! (d a--) sta pushr stp popr st ;

STA Pop T to A Register

Code: 29

Usage Short Instruction

Stack Effects (a--)

Carry Restore from parameter stack
Function:

174

Store T in the Aregister. Pop the parameter stadle original contents in the T
register are copied into the Aregister. Thisrundion initializes the A register so
that it can be used to fetch data from memoryanestiata into memory.

Coding Example:

:+!(na--) stald add st;

: 2! (d a--) sta pushr stp popr st ;
2@ (a--d)staldpld;

XOR Bitwise Exclusive OR

Code: 20

Usage Short Instruction

Stack Effects (nln2--n3)

Carry Exclusive OR n1(16) and n2(16)
Function:

Pop S from the parameter stack and bitwise ex@u®R it to the T register. All 33
bits in T are affected.

Coding Example:

To clear T to zero:
DUP XOR cccccc cccccce
To generate a zero in T register:
DUP DUP XOR cccccec ceccccc
To generate -1 in T::
DUP DUP XOR COM

s<(nn-t)

2DUP XOR 0<

IF DROP 0< EXIT THEN
-0<3;

175

Appendix B:

eP16 eForth Commands

h

' <name> -- Xa Find <name> and leave its execwdress, xa.
- wl w2 -- | Subtract w2 from wl. wl-w2=w3.
w3
! wa -- Store w at a.
ul —u2 Extract least significant digit from uiddeave quotient, u2.
#> w--au Discard w, and leave address and lepfgtiimber held in string
buffer.
#S u--0 Convert u to a number string below PAiffdy.
$" <string>" -a Compile a string literal delinad by “. At run time, leave its
address on stack.
3| -a Run time command of a string literalalze string address, a, ol
stack.
$," <char> -- Compile a character literal.
$,n a-- Compile a name field in header with stdhg.
$COMPILE a-- Compile a word whose name string s.a
$INTERPRET | a-- Interpret a word whose name stisrag a.
(<string>) - Ignore the comment string delimited).
(CALL) a-- Compile a subroutine call to address a.
(parse) b u c -- b U Parse next string delimited by c in buffer b, léngt Length of
delta parsed string is delta.
* nl n2 -- n3| Multiply. n3=n1*n2.
*/ nl n2 n3 --| Leave quotient of (n1*n2)/n3.
ng
*MOD nl n2 n3 --| Leave remainder, nr, and quotient, nq, of (n1*n2)/n
nr ng
, W -- Add w to parameter field of the most mnettedefined command.
. n-- Display signed number with a trailing fita
S <text>" -- Compile a string literal <text>tAun-time display <text>.
S -- Run time command of . ".
. <text>) - Display a string <text>.
.ID xa -- Display name of a command at xa.
.OK - Display system OK message.
R nu-- Display number n right justified in alfl of length u.
.S - Display the contents of parameter stack.
/ nl n2 —nq| Division. Leave signed quotient of n1/n2.
/MOD nl n2 —nr| Division. Leave signed remainder, nr, and quotieqt,of n1/n2.
ng
: <hame> - Begin a colon command of <name>.
; -- Terminate a colon command.
? a-- Display contents of memory at a.
?DUP w --w w | | Duplicate w if it is not 0. Else no operation.
w
?KEY --ctrue | | Return a false flag if no character is entered fkayboard. Else
false leave valid character and true.
?UNIQUE a—a If string at a is a valid commandptily “redef” message.
@ a--X Replace address a by its contents.
@EXECUTE a-- Execute word whose execution addeessaddress a.
[-- Switch from compilation to interpretation.
[COMPILE] -- Compile command <name> in input stream. It pibes an
<name> immediate command.
\ <text> - Ignore <text> until end of line.
] -- Switch from interpretation to compilation.
"H al a2 a3 —| Process backspace. Decrement caharscter pointer, a3, if it

176

al a2 a4 is greater than buffer address al.
+ nl n2 -- n3| Add nl and n2.
+! wa-- Add w to number at address a.
< nln2 -- True if n1 less than n2. Sighed comparison.
flag
<# -- Start number conversion process.
= nln2 -- True if n1 equals n2.
flag
>B a b -- a+1 | Unpack word string at a to byte string at b. Retf, b+4 and g
b+4 count | count to unpack next word.
>CHAR c—n Convert character c to a valid charaoiele.
>NAME xa -- na | 0| Convert execution address, xa, of a command twaitse field
address. na. If failed, return O.
>R w -- Push top item to return stack for tengpgistorage.
0< n -- flag Return true if n is negative.
1- n-n-1 Decrement.
1+ n—n+l Increment.
2! da-- Store a double integer to address a.
2@ a—d Fetch a double integer from address a.
2DROP d-- Drop a double integer.
2DUP d-dd Duplicate a double integer.
4/ n—n/4 Divide by 4.
ABORT -- Return to terminal interpreter, no emeessage.
ABORT" - Compile an error message. Execute alairtlin time.
abort" <string>“| flag -- If flag is true, abort and display an ermoessage.
ABS n--u Convert n to its absolute value, u.
accept aul--a | Accept text from keyboard into buffer at a, lengfh Return with
u2 a and actual length of text, u2.
AFT al —a2 Start compiling an AFT-THEN structureai FOR-NEXT loop.
AGAIN a-- Terminate a BEGIN-AGAIN loop by compiljna branch to
address a.
AHEAD -a Compile a branch instruction. Leavedtidress on stack to be
resolved later by THEN.
ALLOT u-- Extend u bytes to parameter fieldtod most recent command.
AND wl w2 -- | Logical bit-wise AND.
w3
B> b a -- b+1 | Pack a byte at b into least significant byte ilnarement b.
a
BEGIN -- Start an indefinite loop like BEGIN-AGAINBEGIN-UNTIL or
BEGIN-WHILE-REPEAT.
BL --32 Get ASCII code of a blank or space.
CHARS cu-- Display character ¢ u times on teahin
CMOVE al a2 u -- | Move u bytes starting from address al to memonilsgpat a2.
CODE <name>| -- Define a new primitive comand.
COLD -- First command executed after CPU powers up.
COM -- Assemble a COM machine instruction.
COMPILE - Compile following command to parametietd of currently
compiled word.
CONSTANT W -- Define a constant. At run-time, w is left thre stack.
<name>
COUNT a -- a+1 c | Get one hyte ¢ from address a and increment a.
CR - Display a new line.
CREATE -- Create a new data array with <name>. No patamnfield space is
<name> reserved.
DECIMAL -- Set number base to decimal.

177

DIAGNOSE -- 12 charg Produce a string of “eForthMISemi” to verify prirni
commands.
DIGIT u--c Convert number u to corresponding ASfode.
DIGIT? ¢ base -- u| Convert ASCII code c to its corresponding numbelf u
flag successful, return u and true. If unsuccessfulrmet and false.
dm+ au-—atu Dump u bytes of memory starting dtess a.
DNEGATE d---d Negate a double integer.
do$ -a Run time routine of $. Leave address efftfilowing string
literal.
DOES -- Start compiling an interpreter for a neassl of defining
commands.
DOVAR -- Run time routine for variables.
DROP W -- Discard top of stack.
DUMP au-- Dump u bytes of memory starting atrads a.
DUP W—W W Duplicate top of stack.
ELSE -- Terminate a <true> clause, and startadsef clause in
IF-ELSE-THEN branch structure.
EMIT C-- Display character ¢ on terminal.
ERROR a-- Display an error message at addresd alsrt.
EVAL - Evaluate (interpret or compile) input stre@accepted into
terminal input buffer.
EXECUTE a-- Execute a command whose executioiness is a.
EXIT - Terminate execution of a colon command.
EXPECT au-- Accept input stream into buffer adreds a, length u.
EXTRACT ul base — | Extract least significant digit in ul, with radiase. Return
u2c guotient u2 and extracted character c.
FILL auc-- Fill an array at address a, lengthvith byte c.
find ava -- xa | Search vocabulary beginning at va for a word whnzsgae is at
nalaoO address a. If success, return execution addresanganame field
address of command found. Else return a and flage f
FOR -- Start a FOR-NEXT loop.
FORGET -- Search dictionary for <name> and delete it alhdubsequent
<name> commands from dictionary.
HERE --a Get address of next available dictiphacation.
HEX - Set number base to hexadecimal.
HOLD C-- Add character c to number conversion &uff
IF -- Start an IF-ELSE-THEN branch structure. At time, branch to
ELSE or THEN if top of stack is O.
IMMEDIATE -- Add immediate bit to name of the comnthcurrently under
compilation. An immediate command is executed byuiter.
KEY -C Wait for an ASCII character c from theyboard. KEY does not
echo the character.
kTAP bot eot cur| Add a character, c, received from keyboard to gtinterminal
¢ -- bot eot| input buffer. bot is bottom of buffer, eot is enfcbaffer, and cur
cur is pointer to current character in buffer. Prodemskspace.
LITERAL w -- Compile number w as an in-line ligd. At run-time, w is pushed
onto stack.
M* nln2—-d | Double precision multiply, d=n1*n2.
M/MOD dn--nr Floored division. Return both remainder, nr, andtigunt, nq.
ng
MAX nl n2 -- n3| Return n3, the larger of n1 and n2.
MIN nl n2 -- n3| Return n3, the smaller of n1 and n2.
MOD nl n2 -- nr| Modulus, signed remainder of n1/n2.
NAME? a -- xa na || Search dictionary for a command at address actfessful,
a0 return its execution address, xa, and name fieddesd, na. Else

return a with a false flag.

178

NAME> a—xa Convert name field address, a, to ettec address, xa.
NEGATE - Assembler machine instructions to negejpeof stack.
NEXT - Terminate a FOR-NEXT loop. At run timesaement index and
repeat loop until index is 0.
NOT wl -- w2 | Bit-wise one’s complement.
NUMBER? a--n1l|a| Convert a number string at address a to its véflseiccessful,
0 return value n and true; else return a and false.
OK -- Compile source text downloaded from termitaefile buffer,
READBUF.
OR - Assembler OR machine instruction.
OVER - Assembler OVER machine instruction.
OVERT - Make the command last defined visiblerti@ipreter and
compiler.
PACK$ al u a2 — | Pack a counted string in address al, length utelyffer a2.
a2
PAD -a Get address of a scratch pad area atiotienary of at least 84
bytes.
PARSE c--au Parse out the next string in terhinput buffer, delimited by
character c. Return address a and length of patsad u.
QUERY - Wait for a line of text from keyboard aplhce it in input
terminal buffer. A line is terminated by carriaggurn or up to 80
characters.
QUIT - Return to terminal interpreter, no statlange, no message.
R@ -n Duplicate R register to top.
R> n-- Pop return stack to top.
READ -- Read text file from terminal into file haf, READBUF.
REPEAT - Terminate a BEGIN-WHILE-REPEAT loop.
ROT wl w2 w3 | Rotate third item to top.
-- w2 w3
wl
SAME? al a2 u— | Compare two name strings at al and a2. Returidéritical.
ala2f Return positive value if stringl>string2. Returrgatve value if
(-0+) stringl<string2.
SEE <name> -- Decompile the command <name>.
SEND an-- Upload memory array at address gilen, to host in Intel Hex
format.
SIGN n-- If n is negative, add minus sign to numizmnversion buffer.
SPACE -- Display a space.
SPACES u-- Display u spaces.
str n—au Convert number n to a number striragldtess a, length u.
SWAP - Assembler machine instruction to swap tbgtack.
TAP bot eot cur| Add a character c received from keyboard to stirngrminal
c -- bot eot| input buffer. botis bottom of buffer, eot is enduiffer, and cur ig
cur pointer to current character in buffer.
THEN -- Terminate IF-ELSE-THEN branch structure.
TIB --a Get address of terminal input buffer.
TOKEN -a Get the address of next string parsddbterminal input buffer.
TYPE au-- Display a string of u characterststg at address a.
u. u-- Display unsigned number u with a trajlinlank.
U.R nlu2 -- Display unsigned number ul in a figfldi2 characters.
U< ulu2 —f Unsigned compare. Return true if tl<u
UM* ul u2 —ud | Unsigned double precision multiply. ud=ul*u2
UM/MOD ud u -- ur | Unsigned double precision divide. Leave both reainur, and
uq guotient, ug.
UM+ ul u2 — u3| Double precision add. u3=ul+u2. Return carry also.
carry

179

UNPACK ab--b Unpack a packed string at a totbn& length is up to 255
characters.

UNPACK$ ab--b Unpack a packed string at a t8tling length is up to 31
characters.

UNTIL - Terminate a BEGIN-UNTIL loop structure.

VARIABLE - Define a new variable. At run-time, variableasne> leaves its

<name> address on stack.

WHILE -- Start a true clause in BEGIN-WHILE-REREIoop structure. At
run time, repeat true clause while top of staagkois-zero.

WITHIN uuluh— | Leave true if ul <= u < uh. Else leave false.

flag

WORD c--a Get a string delimited by charactéom the input stream and
leave it as a counted string at address a.

WORDS - Display all words in dictionary.

XOR -- Assembler XOR machine instruction.

180

