
 1

Tao of Arduino

Chapter 1. eForth for Arduino

1.1 Arduino as a Firmware Development Platform

All these years, I have been looking for microcontroller platforms on which I can
teach people how to program in the FORTH language. I designed a training course I
called Firmware Engineering Workshop. I could train an open minded engineer to
program in FORTH in about a week, with a reasonable capable platform, i.e., a
microcontroller evaluation board with a FORTH operating system loaded. Good
platforms are expansive, and low cost platforms are inadequate. What I did was to
grab any microcontroller board at hand and used it. It did not work well because
what I taught could not be easily replicated by people at home. People got frustrated
when they could not reproduce results I demonstrated. Then, I found Arduino Uno
Board.

The microcontroller evaluation board I need must have a microcontroller with
reasonable capabilities. An 8-bit microcontroller with a fast clock is adequate.
16-bit of 32-bit microcontrollers are of course much better. The board must have at
least 8 KB of ROM memory and 1 KB of RAM memory. It must also have a
USART port to communicate with a terminal emulator on a host PC. Any other I/O
devices will be icings on the cake. The more the better.

Arduino Uno has all the components I listed above. It is also inexpensive, costing
only $29. It uses ATmega328P, a very interesting microcontroller which has 32 KB
of flash memory, enough to host a FORTH operating system, 2 KB of RAM and many
I/O devices to build substantial applications. Arduino Uno also has a USB port
which connects a PC and an USART device in ATmega328P. This serial interface is
necessary for a FORTH system so that you can run and program ATmega328P
interactively from a terminal emulator on the PC.

Arduino Uno is a lovely machine. You connect it through a USB cable to your PC,
and you can program it to do many interesting things. Its microcontroller
ATmega328P, running at 16 MHz, is very capable of running many interesting
applications.

The template of a sketch, which is the software in Arduino 0022, captures the essence
of firmware programming in casting user applications in two statements: setup() and
loop(). It eliminates all the syntactic statements required by a normal C program and
exposes to you only the core of an application.

However, Arduino software insulates you from the intricate nature of ATmega328P
microcontroller, its instruction set, and its I/O devices. Instead, you are given a
library of useful routines which are used to build applications. The insulation
initially helps you to program the microcontroller in a C-like high level programming
language. However, being an 8 bit microcontroller, ATmega328P in C language will
run out of gas when application demands performance. At this point, you will have

 2

to get down to the bare metal to push ATmega328P to its limit. Then, you have to
learn its instruction set and all its I/O devices, and perhaps program it in assembly
language.

The best alternative approach is to program ATmega328P in the FORTH language.
FORTH exposes ATmega328P to you. You can interactively examine its RAM
memory, its flash memory, and all the I/O devices surrounding the CPU. You can
incrementally add small pieces of code, and test them exhaustively. An interactive
programming and debugging environment greatly accelerates program development,
and ensures the quality of the program.

Since 1990, I have been promoting a simple FORTH language model called eForth.
This model consists of a kernel of 30 primitive FORTH commands which have to be
implemented in machine instructions of a host microcontroller, and 190 compound
FORTH commands constructed from the primitive commands and other compound
commands. By isolating machine dependent commands from machine independent
commands, the eForth model can be easily ported to many different microcontrollers.
This model is ported to ATmega328P, and the result is the 328eForth system, which
runs very nicely on Arduino Uno Board.

328eForth is optimized for performance. The number of primitive commands is
increased to 68. Commands which are used to build the operating system but rarely
used by you are hidden so that you are not overwhelmed with unused commands.
Only 151 commands are exposed to you. The source code is written in AVR
assembly. The code is provided so that you can modify it to suite your application.
The entire system takes up only 5,156 bytes of the flash memory. leaving lots of room
for your application.

Unfortunately, 328eForth can not co-exit with Arduino 0022. The hardware reason
is that 328eForth allows you to add new FORTH commands in the application flash
memory section in ATmega328P, and the commands which write application section
must reside in the bootloader flash memory section in ATmega328P. 328eForth must
occupy the bootloader section. We must over-write the Arduino program loader in the
bootloader section. The software reason is that 328eForth is an independent
programming language and operating system, and it cannot call library routines in the
library of Arduino 0022.

If 328eForth cannot co-exit with the Arduino0022, why does anybody want to use it
on Arduino Uno?

The best answer I can give you is that 328eForth opens up ATmega328P so you can
see what is going on inside ATmega328P, and that you can program and debug it
incrementally, and interactively.

The best example is blinking the on-board LED connected to D13 digital IO line.
This is what the BLINK.pde demonstration program in Arduino 0022 does. When
328eForth is up and running, type the following FORTH commands to turn the D13
LED on and off:

 20 24 C! \ make D13 an output pin

 3

 20 25 C! \ turn D13 LED on
 0 25 C! \ turn D13 LED off

You will find the complete explanation on the above commands in Section 9.2.

Needless to say, the heart of an Arduino Board is the ATmega328P microcontroller.
If you like to fully understand Arduino and make the best use of it, eventually you
have to deal with ATmega328P directly. You will have to come back and read the
AVR Data Book of Atmega328P, DOC8271.pdf, from Atmel Corp on "8-bit AVR
Microcontroller with 4/8/16/ Bytes In-Programmable Flash", which is a huge 566
page document. It is a dry technical document, not for casual reading. Actually, it
is not that bad. Only when you have to drive one of the devices, like the I/O devices,
the lock bits, the fuse bytes, etc., in ATmega328P , you open the respective chapter
and learn all about this device, line by line, work by word. If you have 328eForth
running, you can examine the associated registers, and all the bits in these registers
will gradually make sense. Change these bits interactively, and observe the effects.
There is no better way to learn these devices, and to make them work the way you
want them to work. And, 328eForth is your best friend to do that.

1.2 What is FORTH?

FORTH was invented by Chuck Moore in the 1960s as a programming language.
Chuck was not impressed by programming languages, operating systems, and
computer hardware of that time. He sought the simplest and most efficient way to
control his computers. He used FORTH to program every computer in his sight.
And then, he found that he could design better computers, because FORTH is much
more than just a programming language; it is an excellent computer architecture.

So what is FORTH really?

Many books and many papers had been written about FORTH. However, FORTH is
still elusive because it has many features and characteristics which are difficult to
describe. Now that it has moved from software to hardware, with technologies like
FPGA and custom IC, it is even more difficult to accurately put it into words. Here I
will try to look at it from a completely different angle.

FORTH is a list processor. It is very similar to LISP in spirit, but totally different in
form. Both languages assume that all computable problems can be expressed and
solved in nested lists.

FORTH has a set of commands, and an interpreter to process lists of commands.

FORTH commands are records stored in a memory area called a dictionary.

A record of a FORTH command has three fields: a link field linking commands to
form a searchable list, a name field containing the name of this command as an ASCII
string which can be searched, and a code field containing executable code and data to
perform a specific function for this command. It may have an optional parameter
field, which contains additional data needed by this command. The link field and

 4

name field allow the interpreter to look up a command in the dictionary, and the code
field provides executable code to perform the function assigned to this command.

A FORTH command has two representations: an external representation in the form of
a text string with ASCII characters; and an internal representation in the form of a
token, which invokes executable code stored in a code field. In many FORTH
systems, the tokens are addresses. However, tokens can take other forms depending
on implementation. For example, Java, which is a variant of FORTH, uses byte
tokens.

There are two types of FORTH commands: primitive FORTH commands having
machine code in their code fields, and compound FORTH commands having token
lists in their code fields.

The FORTH interpreter processes lists of commands in text strings. A list of
FORTH commands contains a sequence of strings representing FORTH commands,
separated by white spaces and terminated by a carriage return. The interpreter parses
out commands in the text strings into tokens and executes code represented by these
tokens. When the FORTH interpreter encounters a primitive command, it executes
the machine code in its code field. When it encounters a compound command, it
processes the token list in its code field. How it processes the token list depends
upon how tokens are defined and implemented.

The text interpreter operates in two modes: interpreting mode and compiling mode.
In the interpreting mode, a list of command names is interpreted; i.e., commands are
parsed and executed. In the compiling mode, a list of command names is compiled;
i.e., commands are parsed and corresponding tokens are compiled into a token list.
This token list is given a name to form a new compound command, adding a new
command record in the dictionary.

New compound commands are compiled to represent new token lists. This is the
most powerful feature of FORTH, in that you can compile new compound commands,
which replace lists of existing commands, both primitive and compound. The syntax
to compile a new compound command is:
 : <name> <list of existing commands> ;

Nested token lists are added as new compound commands until the final compound
command becomes the solution of your problem. Lists are compiled and tested from
the bottom up. The solution space can be explored wider and farther, and an
optimized solution can be found more quickly.

Linear, sequential token lists are enhanced by control structures like branch structures
and loop structures. A structure is a token list inside which the execution sequence
can be modified dynamically. The following figure shows a sequential structure, a
branch structure and a loop structure.

 5

A structure has only one entry point and one exit point, although it may have many
branches inside. Structures can be nested, but may not overlap with one another. A
structure can therefore be considered an enhanced token. A compound command is
a structure given a name.

Using the concept of structures, a new compound command has the following syntax:
 : <name> <list of structures> ;

The fundamental reason why FORTH lists (command lists and token lists) can be
simple, linear sequences of commands is that FORTH uses two stacks: a return stack
to stored nested return addresses, and a parameter stack to pass parameters among
nested commands. Parameters are passed implicitly on the parameter stack, and do
not have to be explicitly invoked. Therefore, FORTH commands can be interpreted
in a linear sequence, and tokens can be stored in simple, linear token lists. Language
syntax is greatly simplified, internal representation of code is greatly simplified, and
execution speed is greatly increased.

A FORTH Virtual Machine thus needs two stacks, efficient means to traverse nested
token lists, and a CPU within a reasonable instruction set and memory device to
support a small number of primitive commands. eForth is such an implementation
which has been ported to many commercial microprocessors and microcontrollers.
Auduino Uno with an ATmega328P microcontroller, is an ideal platform for an eForth
implementation, 328eForth system.

 6

1.3 FORTH for Firmware Development

To use FORTH to develop applications for ATmega328P with Arduino Uno, you have
to have the following components:

First, you need a $29 Arduino Uno Board with an USB cable connecting to PC.
Second, you also need a $34 AVRISP mkll In-System Programmer from Atmel to
upload FORTH operating system to ATmega328P, and to configure ATmega328P.

The following picture shows my FORTH firmware development system: an Arduino
Uno, an AVRISP mkll programmer, and a PC. Two USB cables connect Arduino
Uno Boad and AVRISPmkll programmer to PC. The total cost besides the PC is
$63.

Third, on the PC, you need AVR Studio 4, an Integrated Development Environment
(IDE) from Atmel Corp to assemble 328eForth. You can download it for free from
www.atmel.com.

To upload FORTH into ATmega328P, you need AVRISP mkll which can write the
flash memory, both the bootloader section and the application, in ATmega328P
directly. There are a number of other programmers which can do it also.
However, the best and the most reliable one is the AVRISP mkll from Atmel Corp.
Of course, Atmel makes ATmega328P, and it made every effort to provide the best
tool so that more people will use more of its chips.

Atmel also provides AVR Studio 4, an Integrated Development Environment (IDE) to

 7

assemble and compile source code written for Atmega328P, and other 8 bit
microcontrollers it manufactures. It is free, but you have to register with Atmel
before downloading it to your PC.

AVR Studio 4 contains an AVR assembler, C and C++ compilers, simulators, and
debuggers. It also uploads assembled or compiled object code to ATmega328P
through AVRISP mkll programmer. I only use the AVR assembler to assemble the
source code of 328eForth, and then use AVRISP mkll to upload 328eForth object code
to ATmega328P. Once 328eForth is uploaded to ATmega328P, all programming and
debugging operations are performed from a terminal emulator on PC, through the
USB cable connected to Arduino Uno.

On the PC, I use HyperTerminal to communicate with Arduino Uno. HyperTerminal
comes with Windows, and can be accessed through \Start\All
Programs\Accessories\Communication\HyperTerminal. Starting at Windows 7,
Microsoft stopped bundling HyperTerminal with Windows. However, you can still
download HyperTerminal application from MSDN website. The USB/COM driver
enabling HyperTerminal to talk through the USB port to Arduino is located in the
folder of C:\ arduino 0022\\drivers\FTDI drivers\. To load this driver, you need to
download the Arduino 0022 system from www.arduino.cc.

There are other terminal emulators for PC to communication with Arduino.
RealTerm can be downloaded from SourceForge (http://realterm.sourceforge.net/).
It has many more options than HyperTerminal, but they work similarly.

You have to set up communication protocols on HyperTerminal or RealTerm so that
they will communication with Arduino. The set up parameters are 19,200 baud, 1
start bit, 8 data bits, no parity, 1 stop bit, and no flow control.

Apart from the flash memory, ATmega328P also has what's called lock bits and fuse
bytes, which are used to configure the chip to behave properly according to your
requirements. The lock bits protect sections of flash memory from inadvertent
reading and writing operations. The fuse bytes configure CPU, memory, and I/O
devices and select modes of operations for these components. Lock bits and fuse
bytes can be read and written under AVR Studio 4 system through AVRISP mkll
programmer. These bits and bytes are configured properly for the ATmega328P chip
on Arduino Uno and you do not have to worry about them. However, you may have
to set these bits and bytes when you want to change the configuration of ATmega328P
to do exactly what you what it to do, under conditions required by specific
applications.

To develop programs for embedded systems, the conventional methodology is to write
source code in C or in assembly. The source code is compiled or assembled.
Object code is linked by a linker to produce execution code, which is uploaded to the
target system. Now, you cross your fingers and turn on power. Most likely, the
system does not work, and you enter into the debugging phase of development.

To debug a program in an embedded system, you need lots of sophisticated tools, like
simulator, in-circuit emulator (ICE), an oscilloscope, and a good logic analyzer. You
set up break points, and trace the microcontroller instructions cycle by cycle. It is

 8

very difficult when the application program is large and complicated, especially when
you can only observe the microcontroller from the outside.

The Arduino 0022 development environment streamlines the programming process.
You write your code in a sketch. You press the compile button to compile the sketch.
Then, you cross your fingers and press the upload button. If it works, great for you.
If it does not work, you are stuck. Arduino 0022 really cannot give you much help.
If you do not have those sophisticated debugging tools I mentioned above, all you can
do is go back to the source code, read it over and over again, and try to locate the bugs.
Believe me. Debugging a large program without proper tools is not an easy job, on
Arduino, or on any other microcontroller.

FORTH provides you the proper tools. You embed the debugging tools inside the
microcontroller in the form of an interactive FORTH operating system. Source code
in the form of many small commands is compiled by the target microcontroller in the
embedded system. You can control the microcontroller from within, and observe its
behavior from inside out. Break points are not necessary, because FORTH
commands naturally break at their ends, and you can query their results interactively.
New commands are compiled, tested, and debugged incrementally. The solution
space can be explored quickly, and almost exhaustively. Reliable system can thus be
built quickly. FORTH commands are lists of nested lists, and are very compact.
Substantial applications can be stored in very small memory area.

1.4 Arduino Tao Board

Arduino Boards were designed to be expandable. The four sockets for I/O pins on
board can take different daughter boards, or shields, which contain additional circuitry
for various applications. The popularity of Arduino boards is in no small part due to
the rich assortments of Arduino shields extending applications of Arduino boards to
many different fields.

I am exploring Arduino boards in the opposite direction. What can I eliminate from
Arduino Uno to build boards for custom application?

It is interesting that ATmega328P is housed in a 28 pin DIP package which can be
removed and inserted into other DIP sockets. Now a days, most microcontrollers are
packaged in narrow pin surface mount packages and are impossible to solder and
unsolder. ATmega328P in a DIP package is very user friendly, and encourages
hobbyists and students to use it in their projects.

The output pins on ATmega328P can each source or sink up to 40 mA of current, and
they can be used to drive LED's directly. I found that a LED can be driven safely
without a current limiting resistor. It is therefore very convenient to attach LED's
directly to ATmega328P, although most experts advise that you should use current
limiting resistors.

You can turn on a pull-up resistor when an I/O pin is configured for input. The
resistance is 20-50 kΩ, depending on the power supply voltage. It is therefore very
convenient to attach input sensors directly to input pins and use ATmega328P to drive
the sensors, if they do not required large current.

 9

Another interesting characteristic of ATmega328P is that its operating power supply
voltage ranges from 1.8 V to 5.5 V, and its normal operating current is about 4 mA.
It is therefore very convenient to drive this microcontroller with 2 AA batteries.
Most AA batteries discarded from toys still have lots of charge to drive ATmega328P.
These "exhausted" batteries still measure 1.4 volts. I had used a pair of AA batteries
to power a application with ATmega328P, and had never changed the batteries for 4
months. The following picture shows that a bare ATmega328P chip sitting on a
prototyping board driving an application with 2 AA batteries. The big black chip
below ATmega328P is a TSOP32136, an infrared receiver for infrared
communication.

Here is another application where ATmega328P chip is mounted on a custom
development board.

 10

Arduino Uno has a 16 MHz crystal to drive the master oscillator in ATmega328P.
ATmega328P can be configured to use many different oscillators. The one I am
particularly interested is its 8 MHz internal oscillator. If you configure ATmega328P
to run on the internal oscillator, you do not have to use an external crystal or resonator,
and you gain two more pins for I/O operations. The internal oscillator is quite
satisfactory for applications which do not require precise timing, and most casual
application falls into this category.

The RESET pin (Pin 1) on ATmega328P has an internal pull-up resistor. Therefore,
you really do not need an external pull-up resistor to the RESET pin. If you have a
power switch on your application board, it service very well as a reset switch. If you
use the power switch to reset ATmega328P, you can configure the chip so that you can
use the RESET pin for I/O.

If you remove all the external components which are not necessary for the operation
of ATmega328P, all you have to supply is power and ground, as shown in the
following picture. The bare minimal connections are: Pins 7, 20 and 21 to Vcc
power, and Pins 8 and 22 to ground. You don't even have to have a 0.1 uF bypass
capacitor between power and ground. This configuration runs very reliably over
long period of time. This is what I call Tao of Arduino, as shown in the following
picture:

 11

An application is built using the above Arduino Tao Board, as shown in the following
picture:

 12

You can remove an ATmega328P from its socket on Arduino Uno, and plug it in you
own board. Connect the RX (D0) and TX (D1) pins on Uno to Pins 2 and 3 of
ATmega328P on your own board. Power up your board and 328eForth on
ATmega328P will communicate with the terminal interface on PC through Arduino
Uno (without its ATmega328P) and its USB cable. The following picture shows that
you can control an ATmega328P on a target board through the communication pins on
Arduino Uno from which the ATmega328P chip is removed.

This Arduino Tao Board has the following schematic diagram:

 13

As Loa Tzi said in Tao Te Ching:

For knowledge, add a little everyday.
For Tao (wisdom), delete a little everyday.
Delete and delete, until nothing is left.
With nothing, you can do everything.
 --Lao Tzi, Tao Te Ching, Chapter 48
。

When you can make the ATmega328P microcontroller to work without the Arduino
Uno Board, you have learnt everything about ATmega328P, and there is no problem
you cannot solve, within the capability of ATmega328P. This is the Tao of Arduino.

 14

Chapter 2. 328eForth for Arduino Uno

2.1 Introduction

For a very long time, firmware engineering meant to program a UV Erasable PROM
chip and to insert it on a board which contained a microcontroller, some RAM
memory chips, and some I/O chips, and a socket for the UV EPROM. Then flash
memory chips replace UV EPROM's. And then everything is integrated into a single
microcontroller chip, and we now have ISP, In System Programming, which allows
you to program the microcontroller in its own socket. Arduino Uno integrates an
ATmega328P microcontroller with all necessary hardware components on a small
printed circuit board, and captures the fancy of a new generation of will-be firmware
engineers and DIY hobbyists.

I admire the efforts Arduino developers put into this open hardware system, especially
the simplification of the C programming language to these two statements:
 setup();
 loop();
These are the essence of firmware engineering. The only deficiency is the lack of
interactivity between you and your microcontroller chip on the Arduino board. This is
where FORTH can be of great help.

There is a very good FORTH system AmForth for Arduino Uno. You can download
it from Source Forge http://sourceforge.net/projects/amforth/.
It follows the ANS FORTH Standard, but it has a few problems and does not behave
exactly like the prevailing public domain FORTH systems, such as figFORTH, F83,
FPC, and Win32FORTH. It is a fairly complicated implementation, involving
hundreds of files in many different folders. ATmega328P is a lowly microcontroller,
and does not deserve such a large supporting system to program it. After 20 years of
implementing eForth on many different microcontrollers, I am certainly of the opinion
that eForth is the FORTH best suited for this microcontroller. Nevertheless,
AmForth is a good working FORTH system for ATmega328P. I studied it diligently
and enjoyed reading its code.

The original eForth was implemented in Direct Thread Model by myself and Bill
Muench. Dr. Richard Haskell implemented the first Subroutine Thread Model in
86se4th.asm for 8086 and 68000. I took his file and modified it so it could be
assembled by the AVR assembler in AVR Studio 4 development system from Atmel.
AmForth implemented many FORTH commands in AVR assembly, and these code
were ported into my implementation. I call it 328eForth because it is configured
specifically for ATmega328P, used on Arduino Uno.

The most important differences between 328eForth and AmForth are the following:

1. Subroutine Thread Model instead of the Direct Thread Model in AmForth.
2. Using byte addresses to access flash memory, which has native 16-bit cells.
3. All assembly code are in a single file, not scattered in hundreds of little files.
4. Flash programming is optimized through two 128 byte page buffers.
5. No interrupts and no multitasking.
6. EEPROM memory is not used.

 15

7. Interpreter is in NRWW memory. Compiler and user extension are in RWW
memory.
8. Ease in building turnkey applications

These differences make 328eForth much simpler, easier to use, to understand and to
modify.

2.2 Installing Tools

Here are the steps you can follow to get everything running.

Get an Arduino Uno board from Jameco for about $29.

Get the Atmel AVR ISP mkII programmer from Mouser, for about $34.

Download the AVR Studio 4 from Atmel web site:
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=2725

Install AVR Studio 4. Do not connect the AVR ISP mkII until the software
installation is complete.

Studio 4 will install its driver, Jungo USB, for its AVR ISP mkII. The USB cable
must not be connected until After the install in done.

Download the Arduino 0022 package at http://www.arduino.cc/en/Main/Software
Unzip and install. This should load the USB to COM simulator from FTDI. The
drivers are in that package at \Arduino-0022\drivers\FTDI drivers\.

To check on these USB drivers, go to
Start\Control-Panel\System\Hardware\Device-Manager and you will see Jungo\AVR
ISP mkII. Under Ports (Com & LPT), you will see Arduino Uno (COM X).
Remember the COM port number X for use with HyperTerminal or RealTerm.

Download and install RealTerm from SourceForge (http://realterm.sourceforge.net/).
HyperTerminal is standard in Windows under Start\Accessories\Communication\, and
it works similarly.

Connect the AVR ISP mkII ribbon cable to the six pin ISP header on Arduino Uno.
Red wire is #1 matching a tiny dot below the header, as shown in the picture below

Connect a USB cable to the AVR ISP mkII to the computer. Connect a USB cable
from Arduino Uno to the computer. The AVR ISP MkII doesn’t power the target so
the Arduino USP is its power source. Check the serial connections as noted above.

 16

With the cables connected, you should be able to invoke arduino.exe in the Arduino
0022 folder, and do all the wonderful things with Arduino sketches.

You should also be able to invoke AVR Studio 4 and try out its features. I will use
the AVR assembler in Studio 4 to assemble the 328eForth system, and then use AVR
ISP mkll cable to upload 328eForth.hex to ATmega328P on Arduino Uno.

2.3 Assembling 328eForth

Start Atmel AVR Tools \AVR Studio 4\. In the pop-up window, select New Project.
If you have used Studio 4 for other projects, you can select Project Wizard in the
Project pull-down menu

In the Welcome to AVR Studio 4 Window, go to Project Type panel and select Atmel
AVR Assembler. Enter a project name, like my_eforth, in the Project Name panel,
The same name will appear in the Initial File panel. You can change this file name
to the one you like.

A default path is shown in the Location panel. You can change this path by clicking
the box to the right of Location panel, and then navigate to the folder you want.

Click the Next>> button and you are lead to a Debugger Platform and Device
selection window. In the Debugger Platform panel, select AVR Assembler 2. In the
Device Panel, select ATmega328P. Click Finish button and the Studio 4 Window
shows you the new project, with an empty .asm file of the name (my_eforth) you
chose above. You are ready to go to work.

Copy the entire contents of 328eForth.asm into this blank file my_eforth.asm.

 17

Pull down the Project Menu and select Assembler Options, and check the Create List
File box. This way the assembler will produce a listing file for my_eforth, if you
care to look at the assembled code. It is always nice to see actual code the assembler
produces.

Now is the time for the big show. Pull down Build menu and select the Build button.
Studio 4 starts assembling my_eforth.asm, and displays lots of messages in the Build
panel at the bottom of the big window. Its final message is: "Assembly complete.
0 errors. 84 warnings" The assembler does not like 328eForth commands with
names of even number of bytes, because it has to append extra null bytes to the cell
boundaries. There are 84 of these commands. It also reports that the assembled
system has 3560 bytes of code, 1596 bytes of data, and the total byte count is 5156.

Before you upload my_eforth to the Arduino Uno for testing, it is an educational
experience to simulate my_eforth with the AVR simulator. Pull down Debug menu
and select Start Debugging option. The simulator shows you a bewildering set of

 18

windows and panels, displaying information on CPU registers, program memory, data
memory, and I/O registers. Focus on the Editor panel showing the assembly file. A
yellow arrow is pointing to the beginning of execution code at memory location 0,
with the instruction JMP ORIG.

Press F11 to single step through a few lines of start-up code. That's all I can tell you
about the AVR simulator. If you want to change 328eForth.asm, this is the best and
only tool you will need to debug it.

Pull down Debug menu and select Stop Debugging option. You will be back to AVR
Studio 4.

In the second row of icons you can see two icons that look like integrated circuits.
Click on the left one labeled CON, and the Connection Dialog window appears.
Check AVRISP mkII on the left and USB on the right. Then click Connect. You
will then be taken to the AVRISP window. If not, click on the bug icon to the right
labeled AVR.

On the AVRISP window, select Main page. In the Device and Signature Bytes panel,
pick ATmega328P in the Device box. In the Programming and Target Settings panel,
you will see that the ISP Frequency is set to 1 MHz. Click the Erase Device and
Read Signature buttons to verify that you can erase the chip and read its signature
bytes. If AVRISP failed to erase ATmega328P or read the signature bytes, click the
Settings button, and lower the ISP frequency to probably 125 kHz.

Select the Lock Bits page. ATmega328P also has what's called lock bits and fuse
bytes, which are used to configure the chip to behave properly according to your
requirements. The lock bits protect sections of flash memory from inadvertent
reading and writing operations. Select 0xFF for the lock bits to allow writing to the
flash memory. Click Program button to program the lock bits.

Select the Fuses page. The fuse bytes configure CPU, memory, and I/O devices and

 19

select modes of operations for these components. Select 0xFD for the Extended
Fuse byte, 0xD8 for the High Fuse byte, and 0xFF for the Low Fuse byte. Click
Program button to program the fuse bytes.

Select the Program page. In the Device panel, check the box labeled "Erase device
before flash programming." In the Flash panel, open and navigate to your my_eforth
hex image in your project folder.

Your should now have the green power LED lit on the Arduino Uno. The green
LED lit inside AVR ISP MkII case (shows USB OK) and the green LED lit (shows
programmer cable OK) on the surface of the AVR ISP MkII.

Click the Program button in the Flash panel. You will see a dialog at the lower left

 20

as the program is loaded. You may now disconnect the AVR ISP mkII programmer.
However I generally keep it connected in case I have to reload 328eForth.

2.4 The Terminal Interface

After 328eForth is loaded through the AVRISP programmer, you switch on the
USB/COM port supported by the HyperTerminal interface program (located in
Windows Accessories). Load HyperTerminal or Realterm, and you can now talk to
328eForth on Arduino Uno.

On the HyperTerminal console pull down the Call menu and select Disconnect option.
Then, pull down the File menu and select Properties option. In the Connect Using
dialog box, select the COM port you saw earlier in the USB device assignment.
Click the Configuration button and a COMx Properties window pops up. Select
19,200 baud, 8 data bits, no parity, 1 stop bit, and no flow control. Then click OK
button to dismiss the COMx Properties window.

In the main Properties window, click on the Settings tab and the click the ASCII Setup
button, and an ASCII Setup window pops up. Enter 900 in the Line Delay dialog
box to insert 900 msec delay after sending each line of text. Later you will
download source code files and you will need this end of line delay.

Click OK button to dismiss the ASCII Setup window. Click OK button in the main
Properties window and dismiss this window also.

Now you are back to the HyperTerminal Console window. Pull down Call menu and
select Call option, and you will see the sign-on message generated by 328eForth:
 328eForth v2.20

Hitting Return key several times, and you should see the two send/receive LEDs flash
on Arduino Uno, and ok messages are displayed on the HyperTerminal console.
You can now type in FORTH commands to interact with 328eForth on Arduino Uno.

328eForth is case insensitive. You can type commands in either upper or lower case.

2.5 Testing 328eForth on Arduino Uno

To recapitulate, you have to install AVR Studio 4, and Arduino 0022. You have to
connect your Arduino Uno board to a USB port on your PC, and a AVR ISP mkII
programmer to Arduino Uno and to another USB port. Assemble 328eForth.asm,
and upload its .hex file to Arduino Uno. Open HyperTerminal on your Windows and
you get the sign-on message:
 328eForth v2.20

Type these FORTH commands to test the system:
 words
 100 dump
 200 idump
 7000 idump

 21

Note that 32eForth is in the hexadecimal base when it starts.

After bring up 328eForth, type WORDS and you will see a list of eForth commands on
the HyperTerminal console:

HyperTerminal breaks up a word at the right margin of the window console. You
will have to read across lines to see whole words. There are 151 FORTH commands
visible in 328eForth system. There are actually about 200 eForth commands, but
many of them are hidden, without link and name fields. These hidden commands are
needed to implement the 328eForth system, but are not useful in normal programming.
Therefore, I commented out their link fields and name fields in the assembly source
file. If you are interested in how 328eForth was implemented, and perhaps like to
modify it, you can go into the 328eForth.asm file and remove the commenting ';'
characters before the COLON macro's. Re-assemble, and you will see all the
commands, and you can invoke them from your new dictionary.

These 151 visible commands are documented in the Appendix for your reference.

Make sure that HyperTerminal inserts a 900 ms delay after sending each line of text.
Then, you can download a text file by pulling down Transfer Menu and select Send
Text File option. From the file selection window, select a file and push the Open
button. Or, double clicking the selected file. Text from the selected file will be
sent to 328eForth, one line at a time, and you will see how 328eForth responds to
these lines.

 22

Bill Ragsdale had written for a set of demo applications for Arduino with AmForth.
I modified these files so that they work properly under 328eForth. To test them,
download and test the following files in this order:

File Function
hello-world.txt The universal greeting
marker.txt Tools to delete commands and reload files
io-core.txt Core commands to read and write IO registers
flasher.txt Blink on-board LED
tone.txt Generate audio tones
keyer.txt Morse code practice kit
chronometer.txt A stopwatch to measure time to execute a command.
dump.txt A smart dump program to display RAM and flash

memory.

Bill put in lots of comments in these files. Read them carefully and follow his
instructions to test the application commands. After a file is downloaded, there are
usually a list of commands that you can type in to see how things work.

After downloading flasher.txt, you can type these commands:
 DECIMAL \ so that 1000 MS delays for 1 sec
 1000 3 MANY \ flash Digital Line 13 LED 3 times,
 \ on 1 sec, off 1 sec.

After downloading keyer.txt, you can type these commands:
 V \ dit dit dit dah
 SOS \ distress signal

Of course, it assumes that you have a speaker connected to Digital Line D6, and can
generate an audio tone with these commands.

After downloading dump.txt, you can use Bill's smart DUMP command as follows:
 HEX

 23

 100 80 RAM DUMP
 7000 100 FLASH DUMP

There is no FORGET, which trims back the dictionary, as continually coordinating
allocation in two address spaces is difficult. In the marker.txt file, Bill defined a
defining command MARKER, that compiles a command that will trim the dictionary
back to a starting point. Use it as:
 marker chop-point
Later executing
 chop-point
will act like:
 forget chop-point

Bill generally begins his code modules with:
 chop-XX
 marker chop-XX
The first chop-XX will cause an unknown command error and then marker creates it
again. Later recompilations will execute the first chop-XX cutting back the
dictionary and then replace the chop-XX command.

2.6 Learning More about eForth

If you are new to the FORTH programming language, or has some prior knowledge
on a different FORTH system, you may want to look into a series of tutorials I
prepared for the earlier eForth systems. There are 17 lessons in that many text files.
Your are encourage to take these lessons and type in the commands. You can also
download these files in HyperTerminal, and then type in the final commands to test
loaded applications. These lessonXX.txt files are included in the distribution
package with 328eForth.asm.

The contents of these lesson files are listed in the following table:

Lesson Contents
1 Hello, World!
2. Big characters
3. Forth Interest Group
4. Repeated patterns
5 The theory that Jack built
6 Help
7 Money exchange
8 Temperature conversion
9 Weather reporting
10 Multiplication table
11 Calendars
12 Sines and cosines
13 Square roots
14 Number conversion
15 ASCII character table
16 Random numbers

 24

17 Guess a number

 25

Chapter 3. What eForth Does But Arduino Cannot

What can eForth do over and above Arduino 0022?

One quick answer I can give you is to ask you typing in the following command:
 0 DUMP
 80 DUMP
and you will see the following display in the HyperTerminal console:

In this display, you see the RAM memory of ATmega328P from location 0 to location
$FF. If you had read the AVR Microcontroller Data Book, you would know that the
first 32 bytes are 32 registers in ATmega CPU, the next 64 bytes from $20 to $5F are
the I/O registers, and the last 160 bytes from $60 to $FF are Extended I/O registers.
Many of these registers are not implemented as physical devices, and they show up
containing $60. Actual I/O registers show their actual contents.

You can examine the contents of every CPU and I/O register any time. You cannot
do it in Arduino.

Even better, you can change the contents of the CPU and I/O registers! As the CPU
registers are used by the 328eForth system, I do not recommend your changing them
without knowing exactly what you are doing. You can easily crash the system if you
advertently change some of the critical CPU registers. However, there is no better
way to learn the I/O devices in ATmega328P than to study the register definitions and
functions of the bits in these registers, and to change these bits while observing the
signals coming out of the corresponding I/O pins.

 26

Once you understand the control, status, and data registers in an I/O device, you can
write a short FORTH command to exercise this device the way you eventually will
use it. This command to test the device will grow to be a part of your application.

In the following sections, I will show you how to change some of the I/O registers
directly with C! commands, to operate these I/O devices. You need that thick 566
page AVR Microcontroller Data Boot opened on your computer, and read the register
definitions to follow the discussions. I will show you addresses of the I/O registers,
but you will have to look up the definitions of bits in these registers to go along. It is
difficult at first to read register addresses and contents in hex, but I hope you will get
used to them. It will be very rewarding when you see that these bits actually work
and produce results you can observe visually.

The best way to wade through this thick Data Book is to test the devices interactively
with 328eForth.

Are you ready?

3.1 USART

The first device I will discuss is the serial USART0 port, because it is the only I/O
device used by 328eForth. It has the following set of registers:

Address Register Name Function Initial

Value
$C0 UCSR0A Control and status

register A
Status of transmitter and
receiver

--

$C1 UCSR0B Control and status
register B

Interrupt, enabling, data
format

$18

$C2 UCSR0C Control and status
register C

Mode select, start, stop, parity $6

$C4 UBRR0L Baud rate register
low

Baud rate divisor, low byte $33

$C5 UBRR0H Baud rate register
high

Baud rate divisor, high byte 0

$C6 UDR0 Data register Transmitted or received data --

UCSR0A reports the current status of the USART0 and UDR0 contains transmitted or
received data. These registers change dynamically and do not require initialization.
UCSR0B/C selects 1 start bit, 8 data bits, 1 stop bit, no parity and no flow control.
The UBRR0L/H registers set USART0 up to run at 19,200 baud. Do not change
these 4 registers unless you know what you are doing. If you mess up these registers,
Arduino Uno will not talk to the HyperTerminal and you have to reach for the reset
button.

Read AVR Data Book to learn what each bit in UCSR0B/C is doing. You can
understand these bits better when you are actually looking at them on the
HyperTerminal console.

One easy experiment you can do is to change the baud rate register UBBR0L from

 27

$33 to $66 by typing the following commands:
 $66 $C4 C!

If you are in hexadecimal mode, you do not have to type the $ prefix before numbers:
 HEX 66 C4 C!

The baud rate is changed from 19,200 baud to 9,600 baud. Now, HyperTerminal
stops talking to Arduino. Pull down Call menu and select Disconnect option. Pull
down File menu and select Properties option. In the Properties window, change the
baud rate to 9,600 baud. Connect the phone line, and Arduino will talk to
HyperTerminal at 9,600 baud.

Type '0 DUMP' commands, and you will see that contents of UBRR0L register at C4 is
changed to 66.

Type the following commands to get back to 19,200 baud:
 33 C4 C!

Change the baud rate of HyperTerminal back to 19,200 baud so Arduino will talk
again.

Always return HyperTerminal to 19,200 baud. Otherwise, when Arduino Uno is
reset and reverts to 19,200 baud, you would spend a long time wondering why
Arduino does not talk to the HyerTerminal. It could cause a panic, if you forget that
they are using different baud rates.

3.2 GPIO Port B

The Digital I/O Line 13 on Arduino Uno is connected to bit-5 of GPIO Port B, PB-5.
Port B as a general purpose I/O device has the following registers:

Address Register Name Function Initial

Value
$23 PINB Input register Status of input pins --
$24 DDRB Direction register 1: output; 0: input 0
$25 PORTB Data register Output data, pull-up resistor 0

Setting a bit in DDRB register makes the corresponding pin an output pin. Then,
writing this bit in PORTB register sends it to the output pin. It is very easy to turn
the LED connected to Line 13 on and off by the following commands:
 HEX
 20 24 C! \ make Line 13 an output pin
 20 25 C! \ turn Line 13 LED on
 0 25 C! \ turn Line 13 LED off

If you read AVR Data Book carefully, you will find that when a pin is set up as an
output pin, writing a 1 to that bit in PINB register will toggle this output pin. Try the
following commands and you can verify this function:
 20 23 C! \ toggle Line 13 LED
 20 23 C! \ toggle Line 13 LED

 28

Type '0 DUMP' commands and you can see the current state of these registers as you
turn the LED on and off.

Now, we can replicate what the BLINK sketch example does in Arduino 0022. Here
is the program in FORTH:
 : MS (n --) FOR AFT $1CB FOR NEXT THEN NEXT ;
 : BLINK 20 24 C! BEGIN 20 23 C! 400 MS AGAIN ;
 FLUSH
 BLINK

400 in hexadecimal equals to 1024 in decimal. $400 MS will cause a delay of about
1 second. Execute BLINK will cause the Line 13 LED to blink forever.

BLINK sketch is the first program every Arduino user runs It gives you a warm and
fuzzy feeling that you are making Arduino Uno do something significant. However,
the above FORTH BLINK program is the silliest program a FORTH programmer can
ever write. It is an infinite loop you cannot get out, unless you push the reset button
or pull the power plug off. The ATmega328P microcontroller is not made to run
BLINK. It is much more powerful and much more intelligent than just turning a
stupid LED on and off.

A thoughtful FORTH programmer would write this program instead:
 : BLINK 20 24 C! BEGIN 20 23 C! 400 MS ?KEY UNTIL DROP ;
 FLUSH
 BLINK

This program will blink the LED forever as the earlier one. But, when you are tired
of looking at this stupid LED, you can stop it by pressing any key on the keyboard.
You can exit the loop. Now, you can type in other commands to the 328eForth
system, and do other useful things.

328eForth is you friend. It can help you explore the wonderful world of
ATmega328P.

If a bit in DDRB is cleared to 0, the corresponding pin becomes an input pin.
Initially this input pin is tri-stated. If you set the corresponding bit in PORTB
register to a 1, this input pin will be pulled to Vcc by an internal pull-up resister.
This pull-up resister is very useful and it simplifies the external circuitry of many
input devices. For example, you can connect this input pin to a push-button switch
with its other terminal grounded. If the switch is open, you will read a high on the
input pin, because of the pull-up resister. If the switch is closed, you will read a low
on the input pin.

Try this on Digital I/O Line 8, which is connected to Bit-0 in Port B. Type the
following commands to test the switch:
 0 24 C! \ make all Port B pins input
 1 25 C! \ turn on pull-up resistor for Line 8
 23 C@ . \ read PINB port and show its contents
 23 C@ . \ repeat with switch on and off

 29

3.3 Timer/Counter0 and Tone Generator

ATmega328P has three very powerful, and hence complicated, timer/counters. They
can be used as timers, counters, pulse width modulators, and square wave generators.
Timer/Counter0 and Timer/Counter2 have an 8 bit counter registers, and
Timer/counter1 has a 16 bit counter register. Here we will follow Bill Ragsdale's
tone generator example in tone.txt file, and use Timer/Counter0 to generator audio
tones.

Timer/Counter0 had the following registers:

Address Register Name Function Initial

Value
$44 TCCR0A Control register A Mode select 0
$45 TCCR0B Control register B Clock select 0
$46 TCNT0 Count register Counter value 0
$47 OCR0A Output compare

register A
Compare value. When equal
to TCNT0, generate output on
OC0A

0

$48 OCR0B Output compare
register B

Compare value. When equal
to TCNT0, generate output on
OC0B

0

The bits in Control Registers A and B are complicated, and you have to read the AVR
Data Book to understand them. To run Timer/Counter0 as a free run counter, set it
up in the CTC (Clear Timer on Compare Match) mode. Store a value in OCR0A
register to specify the period of the audio tone. Connect a speaker to Digital I/O
Line 6, which is on Bit 6 in Port D, PD-6, and is toggles by the output compare signal
of OC0A. Here are the commands you have to type:
 HEX
 40 2A C! \ make OC0A (I/O Line 6, PD-6) an outp ut pin
 42 44 C! \ toggle OC0A on compare match, CTC mo de
 FF 47 C! \ maximum count in OCR0A to compare
 3 45 C! \ select /64, prescaler=3, start count er

You will hear a tone from the speaker, if everything is set up correctly. To turn off
the speaker, type:
 0 45 C! \ prescaler=0, no clock to timer/count er0

Storing a value from 1 to 5 into TCCR0B changes the prescaler between the master
clock and Timer/Counter0. Each step in the prescaler increases the prescaler divisor
by a factor of 4 or 8, and you can hear the tone pitch changes drastically. To make
smaller changes in the tone pitch, change the value in OCR0A register at location $47.

Arduino Uno has a master clock of 16 MHz. With a /64 prescaler, the clock to
Timer/Counter0 is 250 KHz. With a divisor of 255 in OCR0A register, the pitch we
get from OCR0A is about 490 Hz. You can play with the prescaler and the value in
OCR0A to get different pitches.

 30

Now, let us try to run Timer/Counter0 as a PMW (Pulse Width Modulator) device.
Remove the speaker from Digital I/O Line 6, and connect an LED to it. The anode
pin (long leg) is connected to Line 6, and the cathode (short leg) is connected to
ground. Type in the following commands:
 HEX
 40 2A C! \ I/O Line 6 is set up as an output pi n
 83 44 C! \ TCCR0A, fast, non-inverting PWM mode
 80 47 C! \ set OCR0A to mid-range
 3 45 C! \ prescaler=3, start PWM

The LED will be turn on to medium brightness. Reduce the brightness by typing:
 10 47 C! \ decrease LED brightness

Increase the brightness by typing:
 F0 47 C! \ increase LED brightness

Now change to the fast, inverting PWM mode:
 C3 44 C! \ inverting PWM mode

PWM output is now inverted. Storing a bigger value in OCR0A reduces LED
brightness. Storing a smaller value in OCR0A increases LED brightness.

If you have an oscilloscope, you can watch the PWM waveforms. Then, you will
really appreciate the ease in using 328eForth to control your hardware.

You can change the PWM to the phase correct mode by typing:
 81 44 C! \ non-inverting phase correct PWM mode
or,
 C1 44 C! \ inverting phase correct PWM mode

Changing the count value in OCR0A and the prescaler in TCCR0B, you can
experiment with Timer/Counter0 to you heart's delight. You need an oscilloscope to
see the waveforms, and preferably some servo motors to really see the PWM output
doing real work.

The base frequency of the fast PWM oscillator is:
Prescaler Base Frequency
1 31.2 KHz
2 7.81 KHz
3 980 Hz
4 244 Hz
5 61 Hz

3.4 Timer/Counter1

Timer/Counter1 has a 16-bit counter which offers wider dynamic range and higher
accuracy in timing/counting. It is also more complicated than Timer/Counter0 and 2.
Nevertheless, their operations are very similar. Bill Ragsdale wrote a chronometer

 31

program to measure execution time of FORTH code, and I like to reproduce this
measuring function with Timer/Counter1.

The registers and their functions in Timer/Counter1 are as follows:

Address Register Name Function Initial

Value
$80 TCCR1A Control register A Mode select 0
$81 TCCR1B Control register B Mode and clock select 0
$84 TCNT1L Count register Low Counter value low byte 0
$85 TCNT1H Count register High Counter value high byte 0
$88 OCR1AL Output compare

register A Low
Compare low byte. When
equal to TCNT1, generate
output on OC1A

0

$89 OCR1AH Output compare
register A High

Compare high byte. 0

You first clear TCCR1A to set up Timer/Counter1 in the normal counting mode. To
time an event, you clear the 16-bit counter TCNT1 and store a prescaler value into
TCCR1B to start the counter. After the event, clear TCCR1B to stop the counter.
Then, read the accumulated counts in TCNT1 counter.

Before doing all these things, let us first download the marker.txt to compile the MS
function. Then, type in the following commands:
 HEX
 0 80 C! \ clear TCCR1A to set up normal countin g mode
 0 84 ! \ clear 16-bit counter TCNT1
 5 81 C! 100 MS 0 81 C!
 \ time '100 MS' commands
 84 ? \ read counts in TCNT1 counter

Let us stay in hexadecimal base, and 100 MS delays for 256 milliseconds. 400 MS
delays for 1.024 seconds. My experiments show that '0 MS' takes $220 counts, '100
MS' takes 1262 counts, and '400 MS' takes $4322 counts. They look right to me.

With a prescaler of 5, Timer/Counter1 overflows at about 4 seconds, while
Time/Counter0 would overflow at about 16 milliseconds. To generate waves at 1 Hz
range, you have to use Timer/Counter1. We can blink a LED at 1 second periods
using Timer/Counter1, if we connect a LED to the compare output pin OC1A, which
is the Digital I/O Line 9, or PB-1 port.

 HEX
 2 24 C! \ set DDRB PB-1 (Line 9) as output pin
 40 80 C! \ set Timer/Counter1 to CTC mode
 8000 88 ! \ init OCR1A compare register to a val ue
 B 81 C! \ CTC mode, prescaler=3, start wave

Changing the prescaler/mode value in TCCR1B changes the frequency of the output
wave. The frequency and value in TCCR1B are shown as follows:

 32

TCCR1B Value Prescaler Divisor Frequency
9 1 1 244 Hz
A 2 8 30.5 Hz
B 3 64 3.75 Hz
C 4 256 0.96 Hz
D 5 1024 0.24 Hz

3.5 ADC

Analog to Digital Converter is the most interesting, and probably the most
complicated device in a microcontroller. In ATmega328P chip, we have 6 channels
of ADC to read analog signals from external circuits, making it extremely useful for
real applications looking at real analog signals. From a programmer's point of view,
its ADC is not very complicated, and we only have to worry about the following 5
registers:

Address Register Name Function Initial

Value
$78 ADCL Data register Low Data low byte 0
$79 ADCH Data register High Date high byte 0
$7A ADCSRA Control register A Control, status, and prescaler

bits
0

$7B ADCSRB Control register B Auto-triggering source 0
$7C ADMUX Multiplexer

selection register
Voltage reference and
multiplexer section

0

ATmega328P has an internal temperature sensor, connected to Channel 8 of the ADC
device. In addition, the internal 1.1 V reference voltage is connected to Channel 14,
and a ground is connected to Channel 15. These Channels are very useful in testing
the ADC.

Using 5 V power for reference and measuring the internal 1.1 V source, set up the
ADMUX register and start the conversion this way:
 HEX
 4E 7C C! \ select 5 V reference; select Channel 14
 C3 7A C! \ enable/start ADC; select /8 prescale r
 78 ? \ display results, nominally $E0

For reasons I do not understand, a prescaler less than 3 would not start ADC
conversion in this mode of operation. The following commands measures the
ground on Channel 15:
 4F 7C C! \ 5 V reference; ground input on Chann el 15
 C3 7A C! \ start conversion
 78 ? \ display results, 0

The temperature sensor is connected to Channel 8, and it is recommended in AVR
Data Book to read it with the internal 1.1 V source for reference. Type the following
commands:
 C8 7C C! \ C selects 1.1 V reference; 8 selects
 ;temperature sensor

 33

 C3 7A C! \ start conversion
 78 ? \ display results, nominally $160

If you connect an external analog signal source to the A0 pin, then type the following
commands to read its analog value:
 1 27 C! \ setup A0 as input pin, which is on PC -0 port
 1 28 C! \ turn on pull-up resister on A0 pin
 40 7C C! \ setup reference and multiplexer inpu ts
 C3 7A C! \ start conversion
 78 ? \ display results

3.6 Build a Turnkey Application

In the FORTH parley, 'Turnkey' means configuring a FORTH system so that when
power is applied and the system boots up, it initializes all the hardware devices in the
system and start to execute the application it was designed to run. In 328eForth, you
write lots of new commands. These commands are used to build more power
commands until the last command looks like this:
 : APPL SETUP BEGIN READ-INPUTS SEND-OUTPUTS AGAIN ;

To turnkey this application so that it executes APPL command on booting-up, type the
following commands:
 ' APPL 'BOOT ! \ store address of APPL in variable 'BOOT
 $100 ERASE \ erase flash
 $100 $100 WRITE \ save RAM $100-17F to flash $100- 17F
 $180 ERASE \ erase flash if this page is used
 $180 $180 WRITE \ save RAM $180-1FF to flash $180- 1FF

Now, the ATmega328P has the 328eForth system with the complete application saved
to the flash memory. When the Arduino Uno is reset or powered up, APPL will run.

Actually, after APPL command is compiled, all FORTH commands are already stored
in the flash memory, but all the variables are still in RAM. Assuming that necessary
data in RAM that have to be saved are between RAM locations from $100 to $1FF,
the WRITE commands above save them all to the flash memory from $100 to $1FF.
When 328eForth boots up, it automatically copies these two pages from flash to RAM,
and APPL will start with all the necessary data in RAM.

With this limitation that you can save and restore only 256 bytes of RAM memory,
you can build any turnkey application for Arduino Uno.

 34

Chapter 4. Features in 328eForth Implementation

4.1 Addressing Memory

Flash memory in ATmega microcontrollers is organized in 16-bit cells. This allows
addressing to the full 128 Kbyte flash memory with 16 bit addresses. In
ATmega328P the flash memory runs from cell address hex 0000 to 3FFF or decimal 0
to 16,383. RAM and EEPROM memories are byte addressed.

In 328eForth, I chose to address flash memory in bytes, so that it is easier to move
data between flash memory and RAM memory. Although ATmega328P execute
code in 16 bit cells, when you read and write the flash memory, you actually have to
use byte addresses in the Z register, and it is natural to use byte addresses to move
data in or out the flash memory. Therefore, in 328eForth all flash addresses are byte
addresses. Only when executing a command, its execution address in bytes is
converted to a cell address. When you retrieve an address from flash memory or
from the return stack, you have to convert it from a cell address to a byte address
before operating on it.

4.2 Flash Programming

ATmega328P, with its Harvard architecture, is very hostile to FORTH. It is difficult
to extend the FORTH system in flash memory. AmForth demonstrated that we can
add new FORTH commands to the flash memory using a primitive command I!.
However, it writes to flash memory one cell at a time, and this is very inefficient
because it has to erase a page of flash memory and write the modified page back to
flash. It could quickly exhaust the allowed erase-write cycles in the flash memory of
ATmega328P.

The flash memory in ATmega328P is specified to endure 10,000 erase-write cycles.
You have to be very careful about these erase-write cycles when you add new
commands to the FORTH system. To minimize the erase-write cycles and to extend
the life of flash memory, I took out the big gun in Chuck Moore's arsenal: the
ping-pong BLOCK buffers.

I use two 128 byte page buffers in RAM to store compiled code. New FORTH
commands are compiled into these buffers. Two buffers are necessary so that
forward references can be resolved across a page boundary. Otherwise, many more
erase-write cycles would be wasted when building structures in adjacent pages of
flash memory. Only when both buffers are full, the least recently used buffer is
flushed into the flash memory, before a new page of flash memory is read into this
buffer.

The disadvantage is that after a new command is defined, you cannot execute it unless
it is being flushed. Executing a command in a buffer will definitely crash the system.
Always remember to include a FLUSH command at the end of a source code file.
When you are compiling lines of code you type in, remember to do a FLUSH before
executing any command you just typed in. Otherwise, be prepared to reload the
system from AVR Studio 4. This error will happen, believe me, and it is disturbing.
But, remember we are dealing with a microcontroller, and its flash memory can

 35

endure only 10,000 erase-write cycles.

4.3 Number Formats

328eForth accepts only 16 bit numbers, positive, negative and prefixed. Number are
accepted and converted according to a radix stored in variable BASE. The radix is
set by the commands DECIMAL, HEX and BIN. Individual number may be
prefixed by $ for hex. It will be converted without regard to BASE.

328eForth does not handle double integers in its number input and out put commands.

4.4 Memory Spaces

Fetch and store commands exist for the two address spaces (flash: I@, IC@, I!; and
RAM: @, !, C@, C!). Parameters for constants are stored in flash, for variables and
values, in RAM. The reason is to use slow to write flash for constants that are not
changed, and variables and values in RAM that is fast to write. EEPROM memory
is not used in 328eForth.

Care must be taken to know in which memory the allocation commands operate.
These include CREATE, DOES, ALLOT, IALLOT, : , ',', CMOVE, DUMP,
IDUMP, READ, WRITE, and ERASE.

The top of each memory space is denoted by variables: CP for the flash dictionary,
and DP for RAM. Note these are variables so their addresses are passed to the stack
upon their execution.

Two pages of flash memory from $100-1FF are reserved to store initial values of
variables and values. On boot-up, these two pages are copies to RAM at $100-1FF.
When you want to build a turnkey system, this RAM area must be saved back to flash
memory, so that next time the system boots up, new values are copied from flash to
RAM.

Since flash memory is organized in 128 byte pages, commands operating on flash
memory like IDUMP, READ, WRITE and ERASE all use page memory addresses and
they operate on data in pages. DUMP also displays data in 128 byte pages, although
it displays RAM memory.

There are DUMP command to view RAM memory and IDUMP command to view flash
memory. They both accept a byte address and dump 128 bytes from the
corresponding memory. 128 byte page is a convenient sized even for data in RAM
memory.

4.5 Files

ATmega328P has only 2 KB of RAM memory, and it is not enough to handle files and
other mass storage requirements. At present source files are sent to 328eForth for
compiling through the serial terminal USB/COM port. To allow for interpretation
and compilation, a pause must be inserted at the end of each line of text sent to
328eForth. I set the end of line delay in HyperTerminal to 900 ms. It probably

 36

could be half this value. Upon a compiling error an error message will be shown,
but execution continues as the next lines of text are still streaming out of the serial
port. You must manually watch for compilation errors. Generally, one error will
cause many other errors, and 328eForth would crash if it tries to execute commands in
the flash buffers. When this happens, reload 328eForth from AVR Studio 4.

4.6 Case Sensitivity

Both AmForth and eForth are case sensitive. AmForth uses lower case names and
eForth uses upper case names. 328eForth is made case insensitive so that it can
compile source code written for both AmForth and eForth. The command names in
328eForth are all in upper case, and commands typed in lower case are all converted
to upper case before searching the dictionary. The names of new commands are all
converted to upper case when they are compiled into dictionary in flash memory.

Case insensitive system is very friendly to you sitting in front of a terminal.
However, you should also be careful in choosing names for commands so that they
are not duplicated inadvertently.

4.7 What 328eForth Does Not Have

328eForth has no compiler security to check on the pairing of conditionals when
compiling structures. Having an extra THEN in a colon definition will almost
certainly blow the system up as it will write forward link randomly in earlier flash
memory. In this case, execution will show odd errors; and you have to reload the
328eForth hex images. Do be careful when writing these structures:
 IF…THEN
 IF…ELSE…THEN
 BEGIN…AGAIN
 BEGIN…UNTIL
 BEGIN…WHILE…REPEAT
 FOR…NEXT
 FOR…AFT…THEN…NEXT

Remember: Structures can be nested but cannot overlap.

328eForth does not support interrupts, multitasking, user variables, and local variables.
However, the first 256 bytes of flash memory are reserved for interrupt vectors and
for short interrupt service routines.

All commands in the 328eForth dictionary are linked in a single vocabulary. No
multiple vocabularies.

328eForth does not have an assembler. If you have to code assembly routines, use
AVR assembler in AVR Studio 4.

All these features can be added to 328eForth. But, it is better to keep it simple so
people can understand if fully. If you have specific needs for specific tasks, I am
sure you can somehow implement them or have people to help you.

 37

ATmega328P is a small microcontroller. 328eForth is a seed we plant in it. You
can make it to grow into something useful for you.

 38

Chapter 5. 328eForth Source Code

ATmega328P is a very interesting microcontroller from Atmel Corp. It has an 8 bit
CPU with 32 8 bit registers, 32 KB of flash memory, 2 KB of RAM memory, 1 KB of
EEPROM memory, and a host of I/O devices. It is produced in a 28 pin DIP
package, with 20 I/O pins. It is ideally suitable for many embedded applications. It
is can be programmed to be a FORTH Virtual Machine.

The CPU registers are assigned various functions required in a FORTH Virtual
Machine as follows:

Register Alternate Name Function
pc Program counter
sp Return stack pointer
r0 Reserved for multiply and memory operations
r1 Reserved for multiply and memory operations
r2 zerol Provide constant 0
r3 zeroh Provide constant 0
r4 Not used
r5 Not used
r6 Not used
r7 Not used
r8 Not used
r9 Not used
r10 Not used
r11 Not used
r12 Not used
r13 Not used
r14 temp4 Scratch pad
r15 temp5 Scratch pad
r16 temp0 Scratch pad
r17 temp1 Scratch pad
r18 temp2 Scratch pad
r19 temp3 Scratch pad
r20 temp6 Scratch pad
r21 temp7 Scratch pad
r22 looplo Flash memory operations
r23 loophi Flash memory operations
r24 tosl Top of parameter stack low
r25 tosh Top of parameter stack high
r26 x1 Scratch pad
r27 xh Scratch pad
r28 yl Parameter stack pointer low
r29 yh Parameter stack pointer high
r30 zl Used for memory address low
r31 zh Used for memory address high

In 328eForth system, we adopt the Subroutine Threading Model, in which tokens are
represented by subroutine call instructions, and a compound command consists of a

 39

list of subroutine call instructions. Nested token lists, as nested subroutine lists, are
executed naturally by ATmega328P CPU with very little overhead in the nesting and
un-nesting of subroutine calls and returns. It is also possible to mix tokens with
CPU machine instructions when optimizing FORTH commands.

Using the Subroutine Threading Model, physically the compound commands has the
identical structure as the primitive commands, and both types of commands are
generally terminated by a ret machine instruction. However, in the assembly
source listing, we still use the CODE macro to initialize a primitive command, and the
COLON macro to initialize a compound command, although CODE and COLON
macros are identical.

The CPU stack pointer register sp is used as the return stack pointer in the FORTH
Virtual Machine, and the register pair yh；yl is used as the parameter stack pointer.
Both the return stack and the parameter stack are located in the high end of the RAM
memory area. The top element of the parameter stack is cached in register pair
tosh:tosl , and it significantly increases the speed in accessing the parameter
stack.

The zh:zl register pair is used to address flash memory. The 4 register pairs tos ,
x , y , and z support many 16 bit operations, and make ATmega328P acting almost like
a 16-bit CPU. They are used extensively in the primitive commands in 328eForth.

Besides the stacks, the RAM memory area also contains 16 system variable, the
terminal input buffer, two buffers to access flash memory, areas for new variables and
for input and output strings.

ATmega328P distinguishes two sections in its flash memory: a NRWW section in the
high end of flash for bootloader, and a RWW section in the low end for application
code. 328eForth puts its primitive commands and the interpreter in the bootloader
section, because the interpreter must compile new compound commands in the
application section of flash memory. As the 4KB space in the bootloader section is
not big enough to host the entire 328eForth system, many compiler command are
stored in the lower application section, which has space to add (compile) new
compound commands.

A major advantage in using FORTH to develop software in microcontrollers is that we
can interactively write and test small pieces of code on the target microcontroller.
Writing and testing many small code fragments interactively necessitates writing and
erasing flash memory, which will be problematic because flash memory have limited
erasing cycles or life endurance. It is absolutely necessary to conserve flash memory
erasing cycles. In 328eForth we use two 128-byte pages of RAM memory to store
new code to minimize flash memory erasing cycles. Only when both buffers are full,
the least used buffer is flushed to flash memory before it is used to access another
page of flash memory.

In the original eForth Model, only 30 primitive commands were defined to enhance its
portability to a wide range of microcontrollers. In the 328eForth implementation, to
make it run as fast as possible, many compound commands are re-written in AVR

 40

assembly code, and all compound commands in the interpreter are coded using the
relative call rcall and relative jump rjmp machine instructions, so that they can be
squeezed into the 4 KB space in the bootloader section. The compound commands
in the application section have to be coded using long call and long jmp
instructions, because they have to call command in the bootloader section, which is
outside of the range of rcall and rjmp machine instructions.

It is unfortunate that the 328eForth has to use the bootloader section to store its
interpreter, and thus makes it incompatible with the Arduino bootloader. You have to
make a choice to use one or the other. I hope that you will be convinced that
328eForth is a much better programming language and operating system for program
development, and choose to use it in your future projects.

In the following sections, I will present the 328eForth system in its complete source
listing. The source code is commented liberally. However, in-line comments are
only adequate to document the functions of the source code, but not sufficient for the
intentions behind the source code. To give myself enough room to discuss the
structures and the design requirements of all the commands, for one section of source
code, I add another section for comments. I hope this format will let me explain
more fully what the commands do and what was intended for them to do.

; TITLE Atmega328 eForth
.nolist
 .include "m328Pdef.inc"
.list
;== =============
; 328eForth v3.01, Chen-Hanson Ting, July 2011
; Fix error, quit, 2/ and ?stack
;
; 328eForth v2.10, Chen-Hanson Ting, March 2011
; Adapted from
; 86se4th.asm by Richard Haskell
; Amforth by Matthias Trute
; Assembled with AVR Studio 4 from Atmel
; -Subroutine threaded model
; -Uniform byte addressing for flash, RAM and regis ters
; -Ping-pong block buffers for optimal flash progra mming
; -FORTH interpreter & tools are in NRWW flash
; -FORTH compiler & user extension are in RWW flash
; -No interrupt, no multitasking
; -turnkey capability
; -Case insensitive
; -9600 baud, 1 start, 8 data, no parity, 1 stop bi t
; ANS FORTH compatible, but not compliant.
;
; Subroutine threaded eForth; Version. 1.0, 1991
; by Richard E. Haskell
; Dept. of Computer Science and Engineering
; Oakland University
; Rochester, Michigan 48309
;
; eForth 1.0 by Bill Muench and C. H. Ting, 1990
; Much of the code is derived from the following so urces:
; 8086 figForth by Thomas Newman, 1981 and Joe smit h, 1983

 41

; aFORTH by John Rible
; bFORTH by Bill Muench
;
; The goal of this implementation is to provide a s imple eForth Model
; which can be ported easily to many 8, 16, 24 and 32 bit CPU's.
;
; ; You are invited to implement this Model on your f avorite CPU and
; contribute it to the eForth Library for public us e. You may use
; a portable implementation to advertise more sophi sticated and
; optimized version for commercial purposes. Howeve r, you are
; expected to implement the Model faithfully. The e Forth Working
; Group reserves the right to reject implementation which deviates
; significantly from this Model.
;
; Representing the eForth Working Group in the Sili con Valley FIG
Chapter.
; Send contributions to:
;
; Dr. Chen-Hanson Ting
; 156 14th Avenue
; San Mateo, CA 94402
; (650) 571-7639
; ting@offete.com
;

5.1 FORTH Virtual Machine on ATmega328P

328Pdef.inc contains all the register names and names of bits in these registers.
It is included here first so that we can refer to the registers and bits with mnemonic
names.

In the original eForth Model, a small group of FORTH commands were identified as
kernel commands, low level commands, or primitive commands. These commands
were coded in machine instructions of the host microprocessor. They allow the
underlying microcontroller to become a FORTH Virtual Machine. All other
commands were written as lists of commands, and are called high level commands or
compound commands. Compound commands are lists of primitive commands and
other compound commands. This division of commands was very useful in porting
eForth to many different microprocessors, because only primitive commands needed
to be rewritten when moving eForth to a new microprocessor.

In 328eForth, we retained this division. However, we use the Subroutine Threading
Model and optimize many compound commands so that the system executes at the
highest speed and occupies the least memory space. All commands that can be
optimized are re-coded in assembly.

ATmega328P addresses RAM memory in bytes, but addresses flash memory in 16-bit
cells. Two different addressing mechanisms make it difficult to move data between
these two memory areas. After agonizing over this difference for some time, I
decided to address all memories in bytes. When you try to read and write the flash
memory, you will find that you have to read and write it in bytes. We might just as
well use byte addresses to access flash memory. A byte address is converted to a cell

 42

address which you have to jump to locations in flash, or to execute code in flash.

Two 128-byte buffers are allocated in RAM to hold data to be written into flash
memory. These buffers minimize erasing cycles of flash memory.

The original eForth Model is case sensitive. 328eForth is made case insensitive by
converting all input characters to upper case, and all command names are stored as
upper case characters. This is very useful in compiling applications from different
sources, where FORTH commands might be in upper, lower, or mixed cases.

The only I/O device required by 328eForth system is a serial UART device operating
at 19,200 baud, 1 start bit, 8 data bits, not parity, 1 stop bit, and no flow control.
Since in ATmega328P, all I/O registers are mapped into the first 256 bytes in the
RAM space, we can conveniently control all its I/O devices by C! and C@
commands.

328eForth is intended to be used by first time FORTH users. Interrupts and
multitasking are not supported. Nevertheless, provisions are put in so that
sophisticate users can add interrupts. The first 256 bytes in the flash memory is
reserved for reset and interrupt vector table. The next 256 bytes in the flash memory
are used to store initial values allocated to RAM memory locations $100-$1FF.
Therefore, you can build a turn-key application in ATmega328P with 328eForth
system.

;; Version control

.EQU VER = 2 ;major release version
.EQU EXT = 2 ;minor extension

;; Constants

.EQU COMPO = $040 ;lexicon compile only bit
.EQU IMEDD = $080 ;lexicon immediate bit
.EQU BASEE = 16 ;default radix
.EQU BKSPP = 8 ;back space
.EQU LF = 10 ;line feed
.EQU CRR = 13 ;carriage return
.EQU RETT = $9508
.EQU CALLL = $940E

;; Memory allocation for ATmega328P, all byte addre sses
;
; Flash memory
; $0 Reset and interrupt vectors, RWW section
; $100 Initial values for variables
; $200 Start of compiler and user words
; $7000 Start of interpreter words, NRWW section
; $7FFF End of flash memory
;
; RAM memory
; $0 CPU and I/O registers
; $100 Variables
; $120 Free RAM memory

 43

; $160 Initial PAD
; $6F0 Top of data stack
; $700 Terminal input buffer
; $7F0 Top of return stack
; $800 Flash buffer 0
; $880 Flash buffer 1
; $8FF End of RAM memory

.EQU RPP = $7F0 ;start of return stack (RP0)
.EQU TIBB = $700 ;terminal input buffer (TIB)
.EQU UPP = $100 ;start of user area (UP0)
.EQU SPP = $6F0 ;start of data stack (SP0)

;; Flash programmming

.EQU BUF0 = $800
.EQU BUF1 = $880
.EQU NEWER = $11C ;flash pointer
.EQU OLDER = $11E ;flash pointer
; buffer pointer word format: dirty,page_addr,cell_ addr,buf?

5.1.1 Constants Used by Assembler

Constant Value Function
VER 2 Major release version
EXT 2 Minor extension
COMPO $40 Lexicon compile-only bit
IMEDD $80 Lexicon immediate bit
BASEE 16 Default radix for number conversion
BKSPP 8 Back space ASCII character
LF 10 Line feed ASCII character
CRR 13 Carriage return ASCII character
RETT $9508 Machine code of ret instruction
CALLL $940E Machine code of call instruction
RPP $7F0 Top of return stack (RP0)
TIBB $700 Terminal input buffer (TIB)
UPP $100 Start of user area (UP0)
SPP $6F0 Top of parameter stack (SP0)
BUF0 $800 Address of first flash buffer
BUF1 $880 Address if second flash buffer
NEWER $11C Pointer to the NEW buffer
OLDER $11E Pointer to the OLD buffer

Flash Memory Allocation of 328eForth in Bytes

Address Contents
$0 Reset and interrupt vectors, RWW section
$100 Initial values for variables
$200 Start of compiler and user commands
$7000 Start of interpreter commands, NRWW section

 44

$7FFF End of flash memory

RAM Memory Allocation of 328eForth in Bytes

Address Contents
$0 CPU and I/O registers
$100 Variables
$120 Free RAM memory
$160 Initial PAD for number conversions
$6F0 Top of parameter stack
$700 Terminal input buffer
$7F0 Top of return stack
$800 Flash buffer 0
$880 Flash buffer 1
$8FF End of RAM memory

;; Initialize assembly variable

.SET _LINK = 0 ;init a null link

; Compile a code definition header.

.MACRO CODE ;;LEX,NAME
 .DW _LINK*2 ;;link pointer
 .SET _LINK = pc ;;link points to a name string
 .DB @0,@1
 .ENDM

; Colon header is identical to code header.

.MACRO COLON ;;LEX,NAME,LABEL
 .DW _LINK*2 ;;link pointer
 .SET _LINK = pc ;;link points to a name string
 .DB @0,@1
 .ENDM

5.1.2 Headers

_LINK is an assembly variable which stored the name field address in the header of
the prior command. It is initialize to 0, to signify that the first command is at the end
of the linked list of command records.

CODE is an assembly macro to build headers for primitive commands in the
328eForth system. It is used in the following fashion:
 CODE 4,"EMIT"
It expects two arguments: a one byte number and a byte string.

CODE macro first allocates two bytes for a link field, and places the contents in
_LINK into this link field. Then, _LINK is updated to point to the next location as
stored in a system variable pc . Next, it assembles two arguments in its DB statement,

 45

which builds up the name field of the command.

CODE macro builds the header of a primitive command. Following this header, the
assembly will assemble ATmega328P machine instructions to fill the code field of this
FORTH primitive command.

COLON builds the header of a compound command. It is exactly the same as CODE,
because we are using the Subroutine Threading Model, and the token list in the code
field of a compound command consists of a list of call instructions, which are
machine instructions of ATmega328P.

The following figure shows the structures of primitive and compound commands.

;; Macros defined by amForth

.DEF zerol = r2
.DEF zeroh = r3
.DEF temp4 = r14
.DEF temp5 = r15
.DEF temp0 = r16
.DEF temp1 = r17
.DEF temp2 = r18
.DEF temp3 = r19
.DEF temp6 = r20
.DEF temp7 = r21

 46

.DEF tosl = r24

.DEF tosh = r25

.macro loadtos
 ld tosl, Y+
 ld tosh, Y+
.endmacro

.macro savetos
 st -Y, tosh
 st -Y, tosl
.endmacro

.macro in_
.if (@1 < $40)
 in @0,@1
.else
 lds @0,@1
.endif
.endmacro

.macro out_
.if (@0 < $40)
 out @0,@1
.else
 sts @0,@1
.endif
.endmacro

.macro readflashcell
 lsl zl
 rol zh
 lpm @0, Z+
 lpm @1, Z+
.endmacro

5.1.3 Assembly Macros

The most important register names are defined in 328pdef.inc provided by Atmel.
Among them yh:yl pair is used as parameter stack pointer, and zh:zl pair is used
to address flash memory. xh:xl pair can be used freely, and in many cases are used
to hold the second item on the parameter stack, which are used with the top item on
parameter stack, but cached in tosh:tosl register pair.

LOADTOS Pop the external parameter stack and copy the popped item into

tosh:tosl register pair. It is used to implement DROP
commands, and many other commands consuming the top two items
on the parameter stack. It uses yh;yl register pair in
post-increment addressing mode

SAVETOS Push the top item on the parameter stack, which is cached in
tosh:tosl register pair, on the external parameter stack. It is
used to implement DUP command, and commands which pushes
new data on the parameter stack. It uses yh:yl register pair in the

 47

pre-decrement addressing mode.
IN_ Read data from an input register. It examines the register address.

For a normal input register, it assembles an in instruction. For an
extended input register, it assembles a lds instruction.

OUT_ Write data to an output register. It examines the register address.
For a normal output register, it assembles an out instruction. For
an extended input register, it assembles a sts instruction.

READFLAS
HCELL

Assume that zh:zl register pair contains a cell address pointing to
a location in flash memory. As the flash memory must be
addressed in bytes, this cell address is shifted left by 1 bit, and two
consecutive bytes from flash memory are read into a pair of
destination register. This macro reveals the fact that flash memory
in ATmega328P is actually organized in bytes. Consequently, I
organized 328eForth using byte addresses to access both RAM and
flash memory. It is astatically much more pleasing than using
different addressing schemes for different types of memory.

in_ and out_ macros take care of the strange I/O architecture in ATmega328P chip.
In the original design only 64 I/O registers were allocated, and uses in and out
instructions to access them. The I/O space is much too small, and had to be
extended to encompass 256 registers.

5.1.4 Variables and Startup Code

Flash memory location 0-$FF is allocated for a reset vector, interrupt vector table and
interrupt service routines. The reset vector at location 0 contains an address pointing
to the reset routine START.

Flash memory location $100-1FF, cell address $80-FF, are reserved to store initial
values of variables in the RAM memory starting at RAM location $100. After
328eForth boots up, it copies 256 bytes from a flash memory array starting at $100 to
RAM memory array starting at $100. This way you can build a turn-key system
with your application.

;; Main entry points and COLD start data

 .CSEG
 .ORG 0
 JMP START

 .ORG $80 ;byte address $100, copy to ram on boot,
 ;saved from ram for turnkey system

UZERO:
 .DW HI*2 ;'BOOT
 .DW 0 ;reserved
 .DW BASEE ;BASE
 .DW 0 ;tmp
 .DW 0 ;SPAN
 .DW 0 ;>IN
 .DW 0 ;#TIB
 .DW TIBB ;TIB

 48

 .DW INTER*2 ;'EVAL
 .DW 0 ;HLD
 .DW LASTN ;CONTEXT pointer
 .DW CTOP ;CP
 .DW DTOP ;DP
 .DW LASTN ;LAST
 .DW $6F00 ;PTR0 to BUF0
 .DW $6F81 ;PTR1 to BUF1
ULAST:

 .ORG $3800 ;byte address $7000
START:
 in_ r10, MCUSR
 clr r11
 clr zerol
 clr zeroh
 out_ MCUSR, zerol
 ; init return stack pointer
 ldi xl,low(RPP)
 out_ SPL,xl
 ldi xh,high(RPP)
 out_ SPH,xh
 ; init parameter stack pointer
 ldi yl,low(SPP)
 ldi yh,high(SPP)
 ; jump to Forth starting word
 jmp COLD

The first 32 bytes starting at location $100 are used by system variables, as shown in
the following list:

Variable Address Function
'BOOT 100 Execution vector to start application command.
 102 Reserved
BASE 104 Radix base for numeric conversion.
tmp 106 Scratch pad.
HLD 108 Pointer to a buffer holding next digit for numeric

conversion.
SPAN 10A Number of characters received by EXPECT.
>IN 10C Input buffer character pointer used by text interpreter.
#TIB 10E Number of characters in input buffer.
'TIB 110 Address of Terminal Input Buffer.
'EVAL 112 Execution vector switching between $INTERPRET and

$COMPILE.
CONTEXT 114 Vocabulary array pointing to last name fields of

dictionary.
CP 116 Pointer to top of dictionary, the first available flash

memory location to compile new command
DP 118 Pointer to the first available RAM memory location.
LAST 11A Pointer to name field of last command in dictionary.
NEW 11C Pointer to most recently used flash memory buffer.
OLD 11E Pointer to the flash memory buffer not used recently, to

 49

be flushed back to flash memory

The startup routine START is located at the beginning of the bootloader section in
flash memory, at location $7000 (cell address $3800). It first clears registers zerol,
zeroh , and the CPU status register MCUSR. It then initializes the return stack
pointer in the SP register, and the parameter stack pointer in yh:yl register pair. It
thus completes hardware initialization, and then jumps to COLD command which
initializes the 328eForth FORTH Virtual Machine, and starts running an application.
The default application in 328eForth is HI , which simply sends out a sign-on message
and falls into the text interpreter QUIT. The address of HI is stored in memory
location named 'BOOT at $100 (both in flash and in RAM memory). This address
can be changed to point to an application command in a turnkey system.

5.1.5 Device Dependent I/O

The only I/O device used by 328eForth system is the serial communication device
USART0 in ATmega328P chip.

;; Device dependent I/O

; ?RX (-- c T | F)
; Return input character and true, or a false if no input.

 CODE 4,"?KEY"
QRX:
QKEY:
 savetos
 clr tosl
 clr tosh
 movw tosl,zerol
 in_ xl,UCSR0A
 sbrs xl,7
 ret
 in_ tosl,UDR0
 savetos
 ser tosl
 ser tosh
 ret

; TX! (c --)
; Send character c to the output device.

 CODE 4,"EMIT"
EMIT:
TXSTO:
 in_ xl,UCSR0A
 sbrs xl,5
 rJMP TXSTO
 out_ UDR0,tosl
 loadtos
 ret

; !IO (--)

 50

; Initialize the serial I/O devices.

; CODE 3,"!IO"
STOIO:
 ldi xl,$66 ;19200 baud
 out_ UBRR0L,xl
 clr xl
 out_ UBRR0H,xl
 ldi xl,$18 ;enable TX and RX
 out_ UCSR0B,xl
 ldi xl,6 ;8 data bits
 out_ UCSR0C,xl
 RET

!IO Initialize USART0 device. It writes $66 into baud rate register pair

UBRR0H:UBRR0L to set up the baud rate to 9600 baud. It writes $18
into control register UCSR0B to enable both transmitter and receiver in
USART0. It then write $6 into control register UCSR0C to set up the
data format to 1 start bit, 8 data bits, no parity, 1 stop bit, and no flow
control.

?KEY Examine the status register UCSR0A to see if there is a valid character in
the receiver. If a character is received, ?KEY reads the ASCII code of
the character in data register UDR0 and pushes it on the parameter stack.
It then pushes a true flag on the top. If no character is received, it only
pushes a false flag on the parameter stack.

EMIT Send a character to the transmitter. It first waits on the transmitter buffer
empty flag in UCSR0A register. When the transmitter is ready to
transmit, it pops the character off the parameter stack and writes it into
the transmitter data register UDR0.

5.1.6 Kernel

doLIT command is used to build literal structures in compound commands. It
allows numbers to be pushed on the parameter stack when the compound command is
executed.

;; The kernel

; doLIT (w --)
; Push an inline literal.

; CODE COMPO+5,"doLIT"
DOLIT:
 savetos
 pop zh
 pop zl
 readflashcell tosl,tosh
 ror zh
 ror zl
 push zl
 push zh
 ret

 51

; next (--)
; Run time code for the single index loop.

; CODE COMPO+4,"next"
DONXT:
 POP zh ;ret addr
 POP zl ;
 pop xh ;count
 pop xl
 sbiw xl, 1
 brge NEXT1
 adiw zl,1
 push zl
 push zh
 ret
NEXT1:
 push xl ;push count back
 push xh
 readflashcell xl,xh
 push xl
 push xh
 ret

next Build indexed loop structures in compound command. A loop starts

when the loop index is pushed on the return stack. When it is executed,
it decrements this loop index on the return stack. If resulting index is
not negative, jump back to repeat the loop. If the resulting index is
negative, pop the return stack to discard the index, and exit the loop.

The literal structure and the indexed loop structure are show in the following figure:

 52

5.1.7 Flow Control

?branch and branch commands are used to build control structures and loop
structures in compound commands. In the following figure, an IF-ELSE-THEN
branch structure and a BEGIN-WHILE-REPEAT loop structure are illustrated:

 53

; ?branch (f --)
; Branch if flag is zero.

; CODE COMPO+7,"?branch"
QBRAN:
 pop zh
 pop zl
 or tosl, tosh
 loadtos
 breq BRAN1
 adiw zl,1
 push zl
 push zh
 ret

; branch (--)
; Branch to an inline address.

; CODE COMPO+6,"branch"
BRAN:
 pop zh
 pop zl

 54

BRAN1:
 readflashcell xl,xh
 push xl
 push xh
 ret

; EXECUTE (b --)
; Execute the word at ca=b/2.

 CODE 7,"EXECUTE"
EXECU:
 asr tosh ;b/2
 ror tosl
 push tosl
 push tosh
 loadtos
 ret

; EXIT (--)
; Terminate current colon word.

 CODE 4,"EXIT"
EXIT:
 pop xh
 pop xl
 ret

?branch Build a conditional branch in compound commands.
branch Build an unconditional branch in compound commands.
EXECUTE Jump to an execution address on the top of the parameter stack. As

the execution address is a byte address, it must be converted to a cell
address for jumping. The cell address is pushed on the return stack
and a RET instruction is executed to cause the jump.

EXIT Terminate a compound command. Since it is executed as a call
EXIT command, the return address must be popped off the return
stack and then a ret instruction is executed. It is retained for
compatibility. The call EXIT command can be simply replaced
by a ret machine instruction.

5.1.8 RAM Memory Access

ATmega328P has separated RAM memory and flash memory. Two different
memories need two separate sets of command to read and write them.

; ! (w a --)
; Pop the data stack to memory.

 CODE 1,"!"
STORE:
 movw zl, tosl
 loadtos
 std Z+1, tosh
 std Z+0, tosl

 55

 loadtos
 RET

; @ (a -- w)
; Push memory location to the data stack.

 CODE 1,"@"
AT:
 movw zl, tosl
 ld tosl, z+
 ld tosh, z+
 RET

; C! (c b --)
; Pop the data stack to byte memory.

 CODE 2,"C!"
CSTOR:
 movw zl, tosl
 loadtos
 st Z, tosl
 loadtos
 RET

; C@ (b -- c)
; Push byte memory location to the data stack.

 CODE 2,"C@"
CAT:
 movw zl, tosl
 clr tosh
 ld tosl, Z
 RET

@ Read a 16-bit data stored in the address on top of the parameter stack.

The address is a byte address pointing to a location in RAM meory.
! Store the 16-bit data as the second item on parameter stack into the

address on top of the parameter stack.
C@ Read an 8-bit data stored in the address on top of the parameter stack.
C! Store an 8-bit data as the second item on parameter stack into the address

on top of the parameter stack.

These 4 memory commands access data stored in RAM memory. Since in
ATmega328P, the CPU registers and I/O registers are mapped to the RAM memory
space from 0 to $FF, we can control ATmega328P interactively using these
commands. This is the greatest advantage 328eForth has over the Arduino operating
system which is a Compile-Load-Test no-interactive system.

To access flash memory, we have the corresponding I@, I! , and IC@ commands.
They are discussed in a later section.

5.1.9 Return Stack

328eForth system uses the return stack for two specific purposes: to save addresses

 56

while recursing through a token list, and to store the loop index for a FOR-NEXT
loop.

Return stack is used by the FORTH Virtual Machine to save return addresses to be
processed later. It is also a convenient place to store data temporarily. The return
stack can thus be considered as an extension of the parameter stack. However, one
must be very careful in using the return stack for temporary storage. The data
pushed on the return stack must be popped off before ret is executed. Otherwise,
ret will get the wrong address to return to, and the system generally will crash.
Since >R and R> are very dangerous to use, they are designed as compile-only
commands and you can only use them in the compiling mode.

In setting up a loop, FOR compiles >R, which pushes the loop index from the
parameter stack to the return stack. Inside the FOR-NEXT loop, the running index
can be recalled by R@. NEXT compiles call next with an address after FOR.
when next is executed, it decrements the loop index on the top of the return stack.
If the index becomes negative, the loop is terminated; otherwise, next jumps back to
the command after FOR.

; R> (-- w)
; Pop the return stack to the data stack.

 CODE COMPO+2,"R>"
RFROM:
 savetos
 pop xh
 pop xl
 pop tosh
 pop tosl
 push xl
 push xh
 RET

; R@ (-- w)
; Copy top of return stack to the data stack.

 CODE 2,"R@"
RAT:
 savetos
 pop xh
 pop xl
 pop tosh
 pop tosl
 push tosl
 push tosh
 push xl
 push xh
 RET

; >R (w --)
; Push the data stack to the return stack.

 CODE COMPO+2,">R"
TOR:

 57

 pop xh
 pop xl
 push tosl
 push tosh
 push xl
 push xh
 loadtos
 RET

>R Pop a number off the parameter stack and pushes it on the return stack.
R> Pop a number off the return stack and pushes it on the parameter stack.
R@ Copy the top item on the return stack and pushes it on the parameter stack

without disturbing the return stack

5.1.10 Parameter Stack

The parameter stack is the central location where all numerical data are processed,
and where parameters are passed from one command to another. The stack items
have to be arranged properly so that they can be retrieved in the Last-In-First-Out
(LIFO) manner. When stack items are out of order, they can be rearranged by the
stack words DUP, SWAP, OVER and DROP. There are other stack words useful in
manipulating stack items, but these four are considered to be the minimum set.

; SP@ (-- a)
; Push the current data stack pointer.

; CODE 3,"SP@"
SPAT:
 savetos
 movw tosl, yl
 RET

; SP! (a --)
; Set the data stack pointer.

; CODE 3,"SP!"
SPSTO:
 movw yl, tosl
 loadtos
 RET

; DROP (w --)
; Discard top stack item.

 CODE 4,"DROP"
DROP:
 loadtos
 RET

; DUP (w -- w w)
; Duplicate the top stack item.

 CODE 3,"DUP"

 58

DUPP:
 savetos
 RET

; SWAP (w1 w2 -- w2 w1)
; Exchange top two stack items.

 CODE 4,"SWAP"
SWAPP:
 movw xl, tosl
 ld tosl,Y+
 ld tosh,Y+
 st -Y, xh
 st -Y, xl
 RET

; OVER (w1 w2 -- w1 w2 w1)
; Copy second stack item to top.

 CODE 4,"OVER"
OVER:
 savetos
 ldd tosl, Y+2
 ldd tosh, Y+3
 RET

SP! Initialize the parameter stack.
SP@ Return the depth of parameter stack.
DROP Pop the parameter stack discards the top item on it.
DUP Duplicate the top item and pushes it on the parameter stack.
SWAP Exchange the two two item on the parameter stack.
OVER Duplicates the second item and pushes it on the parameter stack.

5.1.11 Logic

The only primitive command which cares about logic is ?branch . It tests the top
item on the stack. If it is zero, ?branch will branch to the following address. If it
is not zero, ?branch will ignore the address and execute the command after the
branch address. Thus we distinguish two logic values, zero for false and non-zero
for true . Numbers used this way are called logic flags which can be either true
or false . Logic flags thus cause conditional branching in control structures.

; 0< (n -- t)
; Return true if n is negative.

 CODE 2,"0<"
ZLESS:
 tst tosh
 movw tosl, zerol
 brge ZLESS1
 sbiw tosl,1
ZLESS1:

 59

 RET

; AND (w w -- w)
; Bitwise AND.

 CODE 3,"AND"
ANDD:
 ld xl, Y+
 ld xh, Y+
 and tosl, xl
 and tosh, xh
 RET

; OR (w w -- w)
; Bitwise inclusive OR.

 CODE 2,"OR"
ORR:
 ld xl, Y+
 ld xh, Y+
 or tosl, xl
 or tosh, xh
 RET

; XOR (w w -- w)
; Bitwise exclusive OR.

 CODE 3,"XOR"
XORR:
 ld xl, Y+
 ld xh, Y+
 eor tosl, xl
 eor tosh, xh
 RET

; UM+ (u u -- udsum)
; Add two unsigned single numbers and return a doub le sum.

 CODE 3,"UM+"
UPLUS:
 ld xl, Y+
 ld xh, Y+
 add tosl, xl
 adc tosh, xh
 savetos
 clr tosh
 clr tosl
 rol tosl
 RET

0< Examine the top item on the parameter stack for its negativeness. If it is
negative, 0< will return a -1 for true. If it is 0 or positive, 0< will return a
0 for false.

AND Remove top two items on the parameter stack and pushes their bitwise
logic AND results on the parameter stack.

OR Remove top two items on the parameter stack and pushes their bitwise

 60

logic OR results on the parameter stack.
XOR Remove top two items on the parameter stack and pushes their bitwise

logic exclusive OR results on the parameter stack.
UM+ Add top two unsigned number on the data stack and replaces them with the

unsigned sum of these two numbers and a carry on top of the sum.
FORTH does not have access to the carry flag in ATmega328P CPU, and
UM+ preserves the carry flag to be used in double integer arithmetic
operations. In 328eForth, most arithmetic commands are coded in
assembly and UM+ is not used often.

5.1.12 System Variables

In 328eForth, all variables used by the system are merged together and are
called system variables. They are allocated in a RAM memory array starting from
location $100. They are all initialized by copying a table of initial values stored in
flash memory starting from location $100.

;; System and user variables

; doVAR (-- a)
; Run time routine for VARIABLE and CREATE.

; CODE COMPO+5,"doVAR"
DOVAR:
 savetos
 pop zh
 pop zl
 readflashcell tosl,tosh
 RET

; 'BOOT (-- a)
; Storage of application address.

 COLON 5,"'BOOT"
TBOOT:
 RCALL DOVAR
 .DW UPP

; BASE (-- a)
; Storage of the radix base for numeric I/O.

 COLON 4,"BASE"
BASE:
 RCALL DOVAR
 .DW UPP+4

; tmp (-- a)
; A temporary storage location used in parse and fi nd.

 COLON 3,"TMP"
TEMP:
 RCALL DOVAR
 .DW UPP+6

 61

; SPAN (-- a)
; Hold character count received by EXPECT.

 COLON 4,"SPAN"
SPAN:
 RCALL DOVAR
 .DW UPP+8

; >IN (-- a)
; Hold the character pointer while parsing input st ream.

 COLON 3,">IN"
INN:
 RCALL DOVAR
 .DW UPP+10

; #TIB (-- a)
; Hold the current count in and address of the term inal input buffer.

 COLON 4,"#TIB"
NTIB:
 RCALL DOVAR
 .DW UPP+12

; 'TIB (-- a)
; Hold the current count in and address of the term inal input buffer.

 COLON 4,"'TIB"
TTIB:
 RCALL DOVAR
 .DW UPP+14

; 'EVAL (-- a)
; Execution vector of EVAL.

 COLON 5,"'EVAL"
TEVAL:
 RCALL DOVAR
 .DW UPP+16

; HLD (-- a)
; Hold a pointer in building a numeric output strin g.

 COLON 3,"HLD"
HLD:
 RCALL DOVAR
 .DW UPP+18

; CONTEXT (-- a)
; A area to specify vocabulary search order.

 COLON 7,"CONTEXT"
CNTXT:
 RCALL DOVAR
 .DW UPP+20

; CP (-- a)
; Point to the top of the code dictionary.

 62

 COLON 2,"CP"
CPP:
 RCALL DOVAR
 .DW UPP+22

; DP (-- a)
; Point to the free RAM space.

 COLON 2,"DP"
DPP:
 RCALL DOVAR
 .DW UPP+24

; LAST (-- a)
; Point to the last name in the name dictionary.

 COLON 4,"LAST"
LAST:
 RCALL DOVAR
 .DW UPP+26

doVAR Fetch a value stored after the call doVAR instruction and pushes it on the
parameter stack. It returns to its caller immediately. call doVAR
instruction and the value after it forms the code field in all variable
commands, with the value pointing to a location in RAM memory.

Variable Address Function
'BOOT 100 Execution vector to start application command.
 102 Reserved
BASE 104 Radix base for numeric conversion.
tmp 106 Scratch pad.
HLD 108 Pointer to a buffer holding next digit for numeric

conversion.
SPAN 10A Number of characters received by EXPECT.
>IN 10C Input buffer character pointer used by text interpreter.
#TIB 10E Number of characters in input buffer.
'TIB 110 Address of Terminal Input Buffer.
'EVAL 112 Execution vector switching between $INTERPRET and

$COMPILE.
CONTEXT 114 Vocabulary array pointing to last name fields of

dictionary.
CP 116 Pointer to top of dictionary, the first available flash

memory location to compile new command
DP 118 Pointer to the first available RAM memory location.
LAST 11A Pointer to name field of last command in dictionary.
NEW 11C Pointer to most recently used flash memory buffer.
OLD 11E Pointer to the flash memory buffer not used recently, to

be flushed back to flash memory

 63

5.2 Common Functions

5.2.1 Arithmetic

This group of FORTH commands are commonly used in writing FORTH applications.
In the original eForth Model they are coded as compound commands to enhance the
portability of eForth. Here in 328eForth implementations, they are coded in
assembly language to increase the execute speed.

;; Common functions

; 2* (n -- n)
; Multiply tos by cell size in bytes.

 COLON 2,"2*"
CELLS:
 lsl tosl
 rol tosh
 ret

; 2/ (n -- n)
; Divide tos by cell size in bytes.

 COLON 2,"2/"
TWOSL:
 asr tosh
 ror tosl
 ret

; ALIGNED (b -- a)
; Align address to the cell boundary.

; COLON 7,"ALIGNED"
ALGND:
 adiw tosl,1
 andi tosl,254
 ret

; BL (-- 32)
; Return 32, the blank character.

 COLON 2,"BL"
BLANK:
 savetos
 ldi tosl,32
 clr tosh
 ret

; ?DUP (w -- w w | 0)
; Dup tos if its is not zero.

 COLON 4,"?DUP"
QDUP:
 mov temp0, tosl
 or temp0, tosh
 breq QDUP1
 savetos

 64

QDUP1:
 RET

2* Shift the top item on the parameter stack left by 1 bit. Multiply by 2.
2/ Shift the top item on the parameter stack right by 1 bit. Divide by 2.
ALIGNED Modify the byte address on top of the parameter stack so that it points to

the next word boundary.
BL Push a blank or space character (ASCII 32) on parameter stack. BL is

often used in parsing out space delimited strings.
?DUP Duplicate the top item on the parameter stack if it is non-zero.

; ROT (w1 w2 w3 -- w2 w3 w1)
; Rot 3rd item to top.

 COLON 3,"ROT"
ROT:
 movw temp0, tosl
 ld temp2, Y+
 ld temp3, Y+
 loadtos
 st -Y, temp3
 st -Y, temp2
 st -Y, temp1
 st -Y, temp0
 RET

; 2DROP (w w --)
; Discard two items on stack.

 COLON 5,"2DROP"
DDROP:
 loadtos
 loadtos
 ret

; 2DUP (w1 w2 -- w1 w2 w1 w2)
; Duplicate top two items.

 COLON 4,"2DUP"
DDUP:
 RCALL OVER
 RJMP OVER

; + (w w -- sum)
; Add top two items.

 COLON 1,"+"
PLUS:
 ld temp0, Y+
 ld temp1, Y+
 add tosl, temp0
 adc tosh, temp1
 RET

 65

; NOT (w -- w)
; One's complement of tos.

 COLON 6,"INVERT"
INVER:
 com tosl
 com tosh
 ret

ROT Rotate the top three items on the parameter stack. The third item is
pulled out to the top. The second item is pushed down to the third item,
and the top item is pushed down to be the second item. ROT is unique in
that it accesses the third item on the parameter stack. All other stack
commands can only access one or two stack items. In FORTH
programming, it is generally accepted that one should not try to access
stack items deeper than the third item. When you have to access deeper
into the data stack, it is a good time to re-evaluate your algorithm. Most
often, you can avoid this situation by factoring your code into smaller parts
which do not reach so deep into the parameter stack.

2DROP Discard the top two items on the parameter stack.
2DUP Duplicate the top two items on the parameter stack.
+ Add the top item on the parameter to the second item, and then pops the

top item off the parameter stack. It is recoded in assembly for speed.
INVERT Invert each individual bit in the top item on the parameter stack. It is

often called 1's complement operation.

ROT is unique in that it accesses the third item on the data stack. All other stack
operators can only access one or two stack items. In Forth programming, it is
generally accepted that one should not try to access stack items deeper than the third
item. When you have to access deeper into the data stack, it is a good time to
re-evaluate your algorithm. Most often, you can avoid this situation by factoring
your code into smaller parts which do not reach so deep.

; NEGATE (n -- -n)
; Two's complement of tos.

 COLON 6,"NEGATE"
NEGAT:
 RCALL INVER
 adiw tosl,1
 ret

; DNEGATE (d -- -d)
; Two's complement of top double.

 COLON 7,"DNEGATE"
DNEGA:
 RCALL INVER
 RCALL TOR
 RCALL INVER
 RCALL DOLIT
 .DW 1
 RCALL UPLUS

 66

 RCALL RFROM
 RJMP PLUS

; - (n1 n2 -- n1-n2)
; Subtraction.

 COLON 1,"-"
SUBB:
 ld temp0, Y+
 ld temp1, Y+
 sub temp0, tosl
 sbc temp1, tosh
 movw tosl, temp0
 ret

; ABS (n -- n)
; Return the absolute value of n.

 COLON 3,"ABS"
ABSS:
 RCALL DUPP
 RCALL ZLESS
 RCALL QBRAN
 .DW ABS1
 RJMP NEGAT
ABS1:
 RET

NEGATE Negate the top item on the parameter stack. It is often called 2's
complement operation.

DNEGATE Negate the top two items on the parameter stack, as a 32-bit double
integer.

- Subtract the top item on the parameter stack from the second item, and
then pops the top item off the parameter stack.

ABS Replace the top item on the parameter stack with its absolute value.

5.2.2 Comparison

The primitive comparison commands in 328eForth are ?branch and 0<.
However, ?branch is at such a low level that it is not used in compound
commands. ?branch is secretly compiled into compound commands by IF as an
address literal. For all intentions and purposes, we can consider IF the equivalent
of ?branch . When IF is encountered, the top item on the parameter stack is
considered a logic flag. If it is true (non-zero), the execution continues until
ELSE, then jump to THEN, or to THEN directly if there is no ELSE clause.

The following logic words are constructed using the IF...ELSE...THEN structure
with 0< and XOR. XOR is used as a "not equal" operator, because if the top two
items on the parameter stack are not equal, the XOR operator will return a non-zero
number, which is considered to be true .

 67

; = (w w -- t)
; Return true if top two are equal.

 COLON 1,"="
EQUAL:
 RCALL XORR
 RCALL QBRAN
 .DW EQU1
 RCALL DOLIT
 .DW 0
 RET
EQU1:
 RCALL DOLIT
 .DW -1
 RET

; U< (u u -- t)
; Unsigned compare of top two items.

 COLON 2,"U<"
ULESS:
 RCALL DDUP
 RCALL XORR
 RCALL ZLESS
 RCALL QBRAN
 .DW ULES1
 RCALL SWAPP
 RCALL DROP
 RJMP ZLESS
ULES1:
 RCALL SUBB
 RJMP ZLESS

; < (n1 n2 -- t)
; Signed compare of top two items.

 COLON 1,"<"
LESS:
 RCALL DDUP
 RCALL XORR
 RCALL ZLESS
 RCALL QBRAN
 .DW LESS1
 RCALL DROP
 RJMP ZLESS
LESS1:
 RCALL SUBB
 RJMP ZLESS

= Compare top two items on the parameter stack. If they are equal, replace
these two items with a true flag; otherwise, replace them with a false
flag.

U< Compare two unsigned numbers on the top of the parameter stack. If the
top item is less than the second item in unsigned comparison, replace these
two items with a true flag; otherwise, replace them with a false flag.
This command is very important, especially in comparing addresses, as we

 68

assume that the addresses are unsigned numbers pointing to unique
memory locations. The arithmetic comparison operator < cannot be used
to determine whether one address is higher or lower than the other. Using
< for address comparison had been the single cause of many failures in the
annals of FORTH. We don not have this problem in ATmega328P since it
has only 32 KB of flash memory. However, watch out when you move
328eForth to a bigger chip.

< Compare two signed numbers on the top of the parameter stack. If the top
item is less than the second item in signed comparison, replace these two
items with a true flag; otherwise, replace them with a false flag.

; MAX (n n -- n)
; Return the greater of two top stack items.

 COLON 3,"MAX"
MAX:
 RCALL DDUP
 RCALL LESS
 RCALL QBRAN
 .DW MAX1
 RCALL SWAPP
MAX1:
 RJMP DROP

; MIN (n n -- n)
; Return the smaller of top two stack items.

 COLON 3,"MIN"
MIN:
 RCALL DDUP
 RCALL SWAPP
 RCALL LESS
 RCALL QBRAN
 .DW MIN1
 RCALL SWAPP
MIN1:
 RJMP DROP

; WITHIN (u ul uh -- t)
; Return true if u is within the range of ul and uh . (ul <= u < uh)

 COLON 6,"WITHIN"
WITHI:
 RCALL OVER
 RCALL SUBB
 RCALL TOR
 RCALL SUBB
 RCALL RFROM
 RJMP ULESS

MAX Retain the larger of the top two items on the parameter stack. Both
numbers are assumed to be signed integers.

MIN Retain the smaller of the top two items on the parameter stack. Both

 69

numbers are assumed to be signed integers.
WITHIN Check whether the third item on the parameter stack is within the range as

specified by the top two numbers on the parameter stack. The range is
inclusive as to the lower limit and exclusive to the upper limit. If the
third item is within range, a true flag is returned on the parameter stack,
replacing all three items. Otherwise, a false flag is returned. All
numbers are assumed to be signed integers.

5.2.3 Divide

UM/MOD and UM* are the most complicated and comprehensive division and
multiplication commands. Once they are coded, all other division and multiplication
operators can be derived easily from them. It has been a tradition in FORTH
programming that one solves the most difficult problem first, and all other problems
are solved by themselves.

;; Divide

; UM/MOD (udl udh un -- ur uq)
; Unsigned divide of a double by a single. Return m od and quotient.

 COLON 6,"UM/MOD"
UMMOD:
 movw temp4, tosl
 ld temp2, Y+
 ld temp3, Y+
 ld temp0, Y+
 ld temp1, Y+
;; unsigned 32/16 -> 16r16 divide
 ; set loop counter
 ldi temp6,$10
UMMOD1:
 ; shift left, saving high bit
 clr temp7
 lsl temp0
 rol temp1
 rol temp2
 rol temp3
 rol temp7
 ; try subtracting divisor
 cp temp2, temp4
 cpc temp3, temp5
 cpc temp7,zerol
 brcs UMMOD3
UMMOD2:
 ; dividend is large enough
 ; do the subtraction for real
 ; and set lowest bit
 inc temp0
 sub temp2, temp4
 sbc temp3, temp5
UMMOD3:
 dec temp6
 brne UMMOD1
UMMOD4:

 70

 ; put remainder on stack
 st -Y,temp3
 st -Y,temp2
 ; put quotient on stack
 movw tosl, temp0
 ret

; M/MOD (d n -- r q)
; Signed floored divide of double by single. Return mod and quotient.

 COLON 5,"M/MOD"
MSMOD:
 RCALL DUPP
 RCALL ZLESS
 RCALL DUPP
 RCALL TOR
 RCALL QBRAN
 .DW MMOD1
 RCALL NEGAT
 RCALL TOR
 RCALL DNEGA
 RCALL RFROM
MMOD1:
 RCALL TOR
 RCALL DUPP
 RCALL ZLESS
 RCALL QBRAN
 .DW MMOD2
 RCALL RAT
 RCALL PLUS
MMOD2:
 RCALL RFROM
 RCALL UMMOD
 RCALL RFROM
 RCALL QBRAN
 .DW MMOD3
 RCALL SWAPP
 RCALL NEGAT
 RCALL SWAPP
MMOD3:
 RET

; /MOD (n n -- r q)
; Signed divide. Return mod and quotient.

 COLON 4,"/MOD"
SLMOD:
 RCALL OVER
 RCALL ZLESS
 RCALL SWAPP
 RJMP MSMOD

; MOD (n n -- r)
; Signed divide. Return mod only.

 COLON 3,"MOD"
MODD:
 RCALL SLMOD

 71

 RJMP DROP

; / (n n -- q)
; Signed divide. Return quotient only.

 COLON 1,"/"
SLASH:
 RCALL SLMOD
 RCALL SWAPP
 RJMP DROP

UM/MOD Divide an unsigned double integer by an unsigned single integer. It
returns the unsigned remainder and unsigned quotient on the parameter
stack. It is coded in assembly and the double integer dividend is stored
in 4 registers temp0 to temp3. Division is carried out similar to long
hand division.

M/MOD Divide a signed double integer by a signed single integer. It returns the
signed remainder and signed quotient on the parameter stack. The
signed division is floored towards negative infinity.

/MOD Divide a signed single integer by a signed integer. It replaces these two
items with the signed remainder and quotient.

MOD Divide a signed single integer by a signed integer. It replaces these two
items with the signed remainder only.

/ Divide a signed single integer by a signed integer. It replaces these two
items with the signed quotient only.

5.2.4 Multiply

;; Multiply

; UM* (u u -- ud)
; Unsigned multiply. Return double product.

 COLON 3,"UM*"
UMSTA:
 movw temp0, tosl
 loadtos
 ; low bytes
 mul tosl,temp0
 movw zl, r0
 clr temp2
 clr temp3
 ; middle bytes
 mul tosh, temp0
 add zh, r0
 adc temp2, r1
 adc temp3, zeroh
 mul tosl, temp1
 add zh, r0
 adc temp2, r1
 adc temp3, zeroh
 mul tosh, temp1
 add temp2, r0

 72

 adc temp3, r1
 movw tosl, zl
 savetos
 movw tosl, temp2
 ret

; * (n n -- n)
; Signed multiply. Return single product.

 COLON 1,"*"
STAR:
 RCALL MSTAR
 RJMP DROP

; M* (n n -- d)
; Signed multiply. Return double product.

 COLON 2,"M*"
MSTAR:
 RCALL DDUP
 RCALL XORR
 RCALL ZLESS
 RCALL TOR
 RCALL ABSS
 RCALL SWAPP
 RCALL ABSS
 RCALL UMSTA
 RCALL RFROM
 RCALL QBRAN
 .DW MSTA1
 RCALL DNEGA
MSTA1:
 RET

; */MOD (n1 n2 n3 -- r q)
; Multiply n1 and n2, then divide by n3. Return mod and quotient.

 COLON 5,"*/MOD"
SSMOD:
 RCALL TOR
 RCALL MSTAR
 RCALL RFROM
 RJMP MSMOD

; */ (n1 n2 n3 -- q)
; Multiply n1 by n2, then divide by n3. Return quot ient only.

 COLON 2,"*/"
STASL:
 RCALL SSMOD
 RCALL SWAPP
 RJMP DROP

UM* Multiply two unsigned single integers and returns the unsigned double

integer product on the parameter stack. UM* command takes advantage of

 73

the multiply machine instructions in ATmega328P chip. The multiply
instructions in ATmega328P operate on 8 bit values, and the 16 bit products
have to be added properly to form a 32 bit double integer product.

* Multiply two signed single integers and returns the signed single integer
product on the parameter stack.

M* Multiply two signed single integers and returns the signed double integer
product on the parameter stack.

*/MOD Multiply the signed integers n1 and n2 , and then divides the double integer
product by n3 . It in fact is ratioing n1 by n2/n3 . It returns both the
remainder and the quotient.

*/ Multiply the signed integers n1 and n2 , and then divides the double integer
product by n3 . It returns only the quotient.

FORTH is very close to assembly languages in that it generally only handles integer
numbers. There are floating point extensions in many more sophisticated FORTH
systems, but they are more exceptions than rules. The reason why FORTH has
traditionally been an integer language is that integers are handled faster and more
efficiently in the computers, and most technical problems can be solved satisfactorily
only using integers. A 16-bit integer has the dynamic range of 110 dB which is far
more than enough for most engineering problems. The precision of a 16-bit integer
representation is limited to one part in 65535, which could be inadequate for small
numbers. However, the precision can be greatly improved by scaling; i.e., taking the
ratio of two integers. It was demonstrated that pi, or any other irrational numbers,
can be represented accurately to 1 part in 100,000,000 by a ratio of two 16-bit
integers.

The scaling commands */MOD and */ are useful in scaling number n1 by the ratio of
n2/n3 . When n2 and n3 are properly chosen, the scaling commands can preserve
precision similar to the floating point operations at a much higher speed. Notice also
that in these scaling operations, the intermediate product of n1 and n2 is a double
precision integer so that the precision of scaling is maintained.

5.2.5 Miscellaneous

;; Miscellaneous

; >CHAR (c -- c)
; Filter non-printing characters.

; COLON 5,">CHAR"
TCHAR:
 RCALL DUPP
 RCALL BLANK
 RCALL DOLIT
 .DW $7F
 RCALL WITHI
 RCALL QBRAN
 .DW TCHAR1
 RET
TCHAR1:
 RCALL DROP

 74

 RCALL DOLIT
 .DW '_'
 RET

; DEPTH (-- n)
; Return the depth of the data stack.

 COLON 5,"DEPTH"
DEPTH:
 RCALL SPAT
 RCALL DOLIT
 .DW SPP-2
 RCALL SWAPP
 RCALL SUBB
 RJMP TWOSL

; PICK (... +n -- ... w)
; Copy the nth stack item to tos.

 COLON 4,"PICK"
PICK:
 ADIW TOSL,1
 RCALL CELLS
 RCALL SPAT
 RCALL PLUS
 RJMP AT

>CHAR Convert a non-printable character to a harmless underscore
character(ASCII 95). As 328eForth is designed to communicate with a
host computer through a serial I/O device, it is important that 328eForth
will not emit control characters to the host and thereby causes unexpected
behavior on the host computer. >CHAR thus filters the characters before
they are sent out by EMIT.

DEPTH Push the number of items currently on the parameter stack to the top of the
stack.

PICK Take a number n off the parameter stack and replaces it with the n'th item
on the parameter stack. The number n is 0-based; i.e., the top item is
number 0, the next item is number 1, etc. Therefore, 0 PICK is
equivalent to DUP, and 1 PICK is equivalent to OVER.

5.2.6 Memory Access

A memory array is generally specified by its starting address and its length in bytes.
In a count string, the first byte is a count byte, specifying the number of bytes in the
following string. String literals in compound commands and the name strings in the
headers of command records are all represented by count strings. Following
commands are useful in accessing memory arrays and strings.

;; Memory access

; +! (n a --)
; Add n to the contents at address a.

 75

 COLON 2,"+!"
PSTOR:
 RCALL SWAPP
 RCALL OVER
 RCALL AT
 RCALL PLUS
 RCALL SWAPP
 RJMP STORE

; COUNT (b -- b +n)
; Return count byte of a string and add 1 to byte a ddress.

 COLON 5,"COUNT"
COUNT:
 movw zl, tosl
 ld temp0, z+
 movw tosl, zl
 savetos
 mov tosl, temp0
 clr tosh
 ret

; ICOUNT (b -- b +n)
; Return count byte of a string and add 1 to byte a ddress.

 COLON 6,"ICOUNT"
ICOUNT:
 RCALL DUPP
 adiw tosl,1
 RCALL SWAPP
 RJMP ICAT

; HERE (-- a)
; Return the top of the code dictionary.

 COLON 4,"HERE"
HEREE:
 RCALL DPP
 RJMP AT

; PAD (-- a)
; Return the address of the text buffer above the c ode dictionary.

 COLON 3,"PAD"
PAD:
 RCALL HEREE
 RCALL DOLIT
 .DW $40
 RJMP PLUS

+! Add the second item on the parameter stack to the cell addressed by the
top item on the stack.

COUNT Fetch one byte from RAM memory pointed to by the address on the top of
the parameter stack. This address is incremented by 1, and the byte just
read is pushed on the stack. COUNT is designed to get the count byte at

 76

the beginning of a counted string, and returns the address of the first byte
in the string and the length of this string. However, it is often used in a
loop to read consecutive bytes in a byte array.

ICOUNT Fetch one byte from flash memory pointed to by the address on the top of
the parameter stack. This address is incremented by 1, and the byte just
read is pushed on the stack. ICOUNT is used to access counted strings
stored in flash memory.

HERE Push the address of the first free location in the RAM memory. FORTH
text interpreter stores here a string parsed out of the Terminal Input Buffer
and then searches the dictionary for a command with this name.

PAD Push on the parameter stack the address of the text buffer where numbers
to be output are constructed and text strings are stored temporarily. It is
64 bytes above HERE.

; TIB (-- a)
; Return the address of the terminal input buffer.

 COLON 3,"TIB"
TIB:
 RCALL NTIB
 ADIW TOSL,2
 RJMP AT

; @EXECUTE (a --)
; Execute vector stored in address a.

 COLON 8,"@EXECUTE"
ATEXE:
 RCALL AT
 RCALL QDUP ;?address or zero
 RCALL QBRAN
 .DW EXE1
 RCALL EXECU ;execute if non-zero
EXE1:RET ;do nothing if zero

; CMOVE (b1 b2 u --)
; Copy u bytes from b1 to b2.

 COLON 5,"CMOVE"
CMOVE:
 RCALL TOR
 RJMP CMOV2
CMOV1:
 RCALL TOR
 RCALL COUNT
 RCALL RAT
 RCALL CSTOR
 RCALL RFROM
 ADIW TOSL,1
CMOV2:
 RCALL DONXT
 .DW CMOV1
 RJMP DDROP

 77

; UPPER (c -- c')
; Change character to upper case

; COLON 5,"UPPER"
UPPER:
 RCALL DUPP
 RCALL DOLIT
 .DW $61
 RCALL DOLIT
 .DW $7B
 RCALL WITHI
 RCALL QBRAN
 .DW UPPER1
 RCALL DOLIT
 .DW $5F
 RCALL ANDD
UPPER1:
 RET

; FILL (b u c --)
; Fill u bytes of character c to area beginning at b.

 COLON 4,"FILL"
FILL:
 RCALL SWAPP
 RCALL TOR
 RCALL SWAPP
 RJMP FILL2
FILL1:
 RCALL DDUP
 RCALL CSTOR
 ADIW TOSL,1
FILL2:
 RCALL DONXT
 .DW FILL1
 RJMP DDROP

TIB Push the address of the Terminal Input Buffer on the parameter stack.
Terminal Input Buffer stores a line of text from the serial I/O input
device. FORTH text interpreter then processes or interprets this line
of text.

@EXECUTE Fetch a code field address of a command which is stored in the
address on the top of the parameter stack, and jumps to it to execute
this command. It is used extensively to execute vectored commands
stored in RAM memory. The behavior of a vectored command can
be changed dynamically at the run time.

CMOVE Copy a byte array from one location to another in RAM memory.
The top three item on the parameter stack are the source address, the
destination address and the number of bytes to be copied.

UPPER Convert the ASCII character on the top of the parameter stack to an
upper case character. This command is used to convert input text
string to an upper case string so that the text interpreter is now case
insensitive.

FILL Fill a memory array with the same byte. The top three items on the

 78

parameter stack are the address of the array, the length of the array in
bytes, and the byte value to be filled into this array.

5.3 Input Output

5.3.1 Numeric Output

FORTH is interesting in its special capabilities in handling numbers across a
man-machine interface. It recognizes that machines and humans prefer very
different representations of numbers. Machines prefer binary representation, but
humans prefer decimal Arabic representation. However, depending on
circumstances, a human may want numbers to be represented in other radices, like
hexadecimal, octal, and sometimes binary.

FORTH solves this problem of internal (machine) versus external (human) number
representations by insisting that all numbers are represented in binary form in CPU
and memory. Only when numbers are imported or exported for human consumption
are they converted to external ASCII representation. The radix of the external
representation is stored in system variable BASE. You can select any reasonable
radix in BASE, up to 72, limited by available printable characters in the ASCII
character set.

The output number string is built below the PAD buffer in RAM memory. The least
significant digit is extracted from the integer on the top of the parameter stack by
dividing it by the current radix in BASE. The digit thus extracted is added to the
output string backwards from PAD to the low memory. The conversion is terminated
when the integer is divided to zero. The address and length of the number string are
made available by #> for outputting.

An output number conversion is initiated by <# and terminated by #>. Between
them, # converts one digit at a time, #S converts all the digits, while HOLD and SIGN
inserts special characters into the string under construction. This set of commands is
very versatile and can handle many different output formats.

;; Numeric output, single precision

; DIGIT (u -- c)
; Convert digit u to a character.

; COLON 5,"DIGIT"
DIGIT:
 RCALL DOLIT
 .DW 9
 RCALL OVER
 RCALL LESS
 RCALL DOLIT
 .DW 7
 RCALL ANDD
 RCALL PLUS
 RCALL DOLIT

 79

 .DW '0'
 RJMP PLUS

; EXTRACT (n base -- n c)
; Extract the least significant digit from n.

; COLON 7,"EXTRACT"
EXTRC:
 RCALL DOLIT
 .DW 0
 RCALL SWAPP
 RCALL UMMOD
 RCALL SWAPP
 RJMP DIGIT

; <# (--)
; Initiate the numeric output process.

 COLON 2,"<#"
BDIGS:
 RCALL PAD
 RCALL HLD
 RJMP STORE

; HOLD (c --)
; Insert a character into the numeric output string .

 COLON 4,"HOLD"
HOLD:
 RCALL HLD
 RCALL AT
 SBIW TOSL,1
 RCALL DUPP
 RCALL HLD
 RCALL STORE
 RJMP CSTOR

DIGIT Convert an integer digit to the corresponding ASCII character.
EXTRACT Extract the least significant digit from a number n on the top of the

parameter stack. n is divided by the radix in BASE and the extracted
digit is converted to its ASCII character which is pushed on the
parameter stack.

<# Initiate the output number onversion process by storing PAD buffer
address into system variable HLD, which points to the location next
numeric digit will be stored.

HOLD Append an ASCII character whose code is on the top of the parameter
stack, to the numeric out put string at HLD. HLD is decremented to
receive the next digit.

; # (u -- u)
; Extract one digit from u and append the digit to output string.

 COLON 1,"#"

 80

DIG:
 RCALL BASE
 RCALL AT
 RCALL EXTRC
 RJMP HOLD

; #S (u -- 0)
; Convert u until all digits are added to the outpu t string.

 COLON 2,"#S"
DIGS:
DIGS1:
 RCALL DIG
 RCALL DUPP
 RCALL QBRAN
 .DW DIGS2
 RJMP DIGS1
DIGS2:
 RET

; SIGN (n --)
; Add a minus sign to the numeric output string.

 COLON 4,"SIGN"
SIGN:
 RCALL ZLESS
 RCALL QBRAN
 .DW SIGN1
 RCALL DOLIT
 .DW '-'
 RCALL HOLD
SIGN1: RET

; #> (w -- b u)
; Prepare the output string to be TYPE'd.

 COLON 2,"#>"
EDIGS:
 RCALL DROP
 RCALL HLD
 RCALL AT
 RCALL PAD
 RCALL OVER
 RJMP SUBB

Extract one digit from integer on the top of the parameter stack, according
to radix in BASE, and add it to output numeric string.

#S Extract all digits to output string until the integer on the top of the
parameter stack is 0.

SIGN Insert a - sign into the numeric output string if the integer on the top of the
parameter stack is negative.

#> Terminate the numeric conversion and pushes the address and length of
output numeric string on the parameter stack.

 81

; str (w -- b u)
; Convert a signed integer to a numeric string.

; COLON 3,"str"
STR:
 RCALL DUPP
 RCALL TOR
 RCALL ABSS
 RCALL BDIGS
 RCALL DIGS
 RCALL RFROM
 RCALL SIGN
 RJMP EDIGS

; HEX (--)
; Use radix 16 as base for numeric conversions.

 COLON 3,"HEX"
HEX:
 RCALL DOLIT
 .DW 16
 RCALL BASE
 RJMP STORE

; DECIMAL (--)
; Use radix 10 as base for numeric conversions.

 COLON 7,"DECIMAL"
DECIM:
 RCALL DOLIT
 .DW 10
 RCALL BASE
 RJMP STORE

str Convert a signed integer on the top of the parameter stack to a numeric
output string.

HEX Set numeric conversion radix to 16 for hexadecimal conversions.
DECIMAL Set numeric conversion radix to 10 for decimal conversions.

5.3.2 Numeric Input

The 328eForth text interpreter must handle numbers input to the system. It parses
commands out of the input stream and executes them in sequence. When the text
interpreter encounters a string which is not the name of a command in the dictionary,
it assumes that the string must be a number and attempts to convert the ASCII digit
string to a number according to the current radix. When the text interpreter succeeds
in converting the string to a number, the number is pushed on the parameter stack for
future use, if the text interpreter is in the interpreting mode. If it is in the compiling
mode, the text interpreter will compile the number to the dictionary as an integer
literal so that when the command under construction is later executed, the integer
value will be pushed on the parameter stack.

If the text interpreter fails to convert the string to a number, this is an error condition
which will cause the text interpreter to abort, post an error message to you, and then

 82

wait for your next line of commands.

;; Numeric input, single precision

; DIGIT? (c base -- u t)
; Convert a character to its numeric value. A flag indicates success.

; COLON 6,"DIGIT?"
DIGTQ:
 RCALL TOR
 RCALL DOLIT
 .DW '0'
 RCALL SUBB
 RCALL DOLIT
 .DW 9
 RCALL OVER
 RCALL LESS
 RCALL QBRAN
 .DW DGTQ1
 RCALL DOLIT
 .DW 7
 RCALL SUBB
 RCALL DUPP
 RCALL DOLIT
 .DW 10
 RCALL LESS
 RCALL ORR
DGTQ1:
 RCALL DUPP
 RCALL RFROM
 RJMP ULESS

; NUMBER? (a -- n T | a F)
; Convert a number string to integer. Push a flag o n tos.

 COLON 7,"NUMBER?"
NUMBQ:
 RCALL BASE
 RCALL AT
 RCALL TOR
 RCALL DOLIT
 .DW 0
 RCALL OVER
 RCALL COUNT
 RCALL OVER
 RCALL CAT
 RCALL DOLIT
 .DW '$'
 RCALL EQUAL
 RCALL QBRAN
 .DW NUMQ1
 RCALL HEX
 RCALL SWAPP
 adiw tosl,1
 RCALL SWAPP
 sbiw tosl,1
NUMQ1:

 83

 RCALL OVER
 RCALL CAT
 RCALL DOLIT

 .DW '-'
 RCALL EQUAL
 RCALL TOR
 RCALL SWAPP
 RCALL RAT
 RCALL SUBB
 RCALL SWAPP
 RCALL RAT
 RCALL PLUS
 RCALL QDUP
 RCALL QBRAN
 .DW NUMQ6
 sbiw tosl,1
 RCALL TOR
NUMQ2:
 RCALL DUPP
 RCALL TOR
 RCALL CAT
 RCALL BASE
 RCALL AT
 RCALL DIGTQ
 RCALL QBRAN
 .DW NUMQ4
 RCALL SWAPP
 RCALL BASE
 RCALL AT
 RCALL STAR
 RCALL PLUS
 RCALL RFROM
 adiw tosl,1
 RCALL DONXT
 .DW NUMQ2
 RCALL DROP
 RCALL RAT
 RCALL QBRAN
 .DW NUMQ3
 RCALL NEGAT
NUMQ3:
 RCALL SWAPP
 RJMP NUMQ5
NUMQ4:
 RCALL RFROM
 RCALL RFROM
 RCALL DDROP
 RCALL DDROP
 RCALL DOLIT
 .DW 0
NUMQ5:
 RCALL DUPP
NUMQ6:
 RCALL RFROM
 RCALL DDROP
 RCALL RFROM
 RCALL BASE

 84

 RJMP STORE

DIGIT? Convert an ASCII numeric digit c on the top of the parameter stack to
its numeric value u according to current radix b. If conversion is
successful, push a true flag above u. If not successful, return c and a
false flag.

NUMBER? Convert a count string of ASCII numeric digits at location a to an
integer. If first character is a $, convert in hexadecimal; otherwise,
convert using radix in BASE. If first character is a -, negate converted
integer. If an illegal character is encountered, the address of string and
a false flag are pushed on the parameter stack. Successful conversion
pushes integer value and a true flag on the parameter stack.
NUMBER? is very complicated because it has to cover many formats in
the input numeric string. It also has to detect the error condition when
it encounters an illegal numeric digit. .

5.3.3 Basic I/O

328eForth system assumes that it communicates with its environment only through a
serial I/O interface. To support the serial I/O, only three words are needed:

;; Basic I/O

; KEY (-- c)
; Wait for and return an input character.

 COLON 3,"KEY"
KEY:
KEY1:
 RCALL QRX
 RCALL QBRAN
 .DW KEY1
 RET

; SPACE (--)
; Send the blank character to the output device.

 COLON 5,"SPACE"
SPACE:
 RCALL BLANK
 RJMP EMIT

; CHARS (+n c --)
; Send n characters to the output device.

; COLON 5,"CHARS"
CHARS:
 RCALL SWAPP
 RCALL TOR
 RJMP CHAR2
CHAR1:

 85

 RCALL DUPP
 RCALL EMIT
CHAR2:
 RCALL DONXT
 .DW CHAR1
 RJMP DROP

; SPACES (+n --)
; Send n spaces to the output device.

 COLON 6,"SPACES"
SPACS:
 RCALL BLANK
 RJMP CHARS

?KEY Return a false flag if no character is pending in the receiver. If a
character is received, the character and a true flag are returned.

KEY Execute ?KEY continually until a valid character is received and the
character is returned.

EMIT Send a character out through the transmit line.
SPACE Output a blank (space) character, ASCII 32.
CHARS Output n ASCII characters. The ASCII code is on the top of the

parameter stack, and number n is the second item on the parameter stack
SPACES Output n blank (space) characters.

; TYPE (b u --)
; Output u characters from b.

 COLON 4,"TYPE"
TYPES:
 RCALL TOR
 RJMP TYPE2
TYPE1:
 RCALL COUNT
 RCALL TCHAR
 RCALL EMIT
TYPE2:
 RCALL DONXT
 .DW TYPE1
 RJMP DROP

; ITYPE (b u --)
; Output u characters from b.

 COLON 5,"ITYPE"
ITYPES:
 RCALL TOR
 RJMP ITYPE2
ITYPE1:
 RCALL ICOUNT
 RCALL TCHAR
 RCALL EMIT
ITYPE2:
 RCALL DONXT

 86

 .DW ITYPE1
 RJMP DROP

; CR (--)
; Output a carriage return and a line feed.

 COLON 2,"CR"
CR:
 RCALL DOLIT
 .DW CRR
 RCALL EMIT
 RCALL DOLIT
 .DW LF
 RJMP EMIT

TYPE Output n characters from a string in RAM memory. The second item on
the parameter stack is the address of the string array, and the length in bytes
is on the top of the parameter stack.

ITYPE Output n characters from a string in the flash memory. The second item on
the parameter stack is the address of the string array, and the length in bytes
is on the top of the parameter stack.

CR Output a carriage-return and a line-feed, ASCII 13 and 10.

String literals are data structures compiled in compound command, in-line with other
tokens, literal structures, and control structures. A string literal must start with a
string token which knows how to handle the following string at run time. Here are
two examples of string literals:

: xxx ... $" A compiled string" ... ;
: yyy " An output string" ... ;

In compound command xxx, $" is an immediate command which compiles the
following string as a string literal preceded by a special token $"| . When $"| is
executed at run time, it returns the address of this string on the parameter stack. In
yyy, ." compiles a string literal preceded by another token ."| , which prints the
compiled string to the output device at run time.

; do$ (-- a)
; Return the address of a compiled string.

; COLON COMPO+3,"do$"
DOSTR:
 RCALL RFROM ;ra
 RCALL RFROM ;ra a
 RCALL DUPP ;ra a a
 RCALL DUPP ;ra a a a
 movw zl,tosl
 readflashcell tosl,tosh
 clr tosh ;ra a a count
 RCALL TWOSL
 RCALL PLUS
 ADIW TOSL,1 ;ra a a'

 87

 RCALL TOR ;ra a
 RCALL SWAPP ;a ra
 RCALL TOR ;a
 RCALL CELLS ;byte address
 RET

; $"| (-- a)
; Run time routine compiled by $". Return address o f a compiled
string.

; COLON COMPO+3,'$'
; .DB '"','|'
STRQP:
 RCALL DOSTR
 RET ;force a call to do$

; ."| (--)
; Run time routine of ." . Output a compiled string .

; COLON COMPO+3,'.'
; .DB '"','|'
DOTQP:
 RCALL DOSTR
 RCALL ICOUNT
 RJMP ITYPES

; .R (n +n --)
; Display an integer in a field of n columns, right justified.

 COLON 2,".R"
DOTR:
 RCALL TOR
 RCALL STR
 RCALL RFROM
 RCALL OVER
 RCALL SUBB
 RCALL SPACS
 RJMP TYPES

do$ Push the address of a string literal on the parameter stack. It is called by a
string token like $"| or ."| , which precede their respective strings in
flash memory. Therefore, the second item on the return stack points to the
string. This address is pushed on the parameter stack. This second item
on the return stack must be modified so that it will point to the next token
after the string literal. This way. the token after the string literal will be
executed, skipping over the string literal. Both $"| and ."| use the word
do$, which retrieve the address of a string stored as the second item on the
return stack.

$"| Push the address of the following string on the parameter stack, and then
executes the token immediately following the string.

."| Print the following string, and then executes the token immediately
following the string.

.R Print a signed integer n , the second item on the parameter stack,
right-justified in a field of +n characters. +n is on the top of the

 88

parameter stack.

; U.R (u +n --)
; Display an unsigned integer in n column, right ju stified.

 COLON 3,"U.R"
UDOTR:
 RCALL TOR
 RCALL BDIGS
 RCALL DIGS
 RCALL EDIGS
 RCALL RFROM
 RCALL OVER
 RCALL SUBB
 RCALL SPACS
 RJMP TYPES

; U. (u --)
; Display an unsigned integer in free format.

 COLON 2,"U."
UDOT:
 RCALL BDIGS
 RCALL DIGS
 RCALL EDIGS
 RCALL SPACE
 RJMP TYPES

; . (w --)
; Display an integer in free format, preceeded by a space.

 COLON 1,"."
DOT:
 RCALL BASE
 RCALL AT
 RCALL DOLIT
 .DW 10
 RCALL XORR ;?decimal
 RCALL QBRAN
 .DW DOT1
 RJMP UDOT
DOT1:
 RCALL STR
 RCALL SPACE
 RJMP TYPES

; ? (a --)
; Display the contents in a memory cell.

 COLON 1,"?"
QUEST:
 RCALL AT
 RJMP DOT

With the number formatting command set as shown above, one can format numbers

 89

for output in any format desired. The free output format is a number string preceded
by a single space. The fix column format displays a number right-justified in a
column of a pre-determined width. The commands ' .' , 'U.', and ? use the free
format. The words .R and U.R use the fix format.

U.R Print an unsigned integer n right-justified in a field of +n characters.
U. Print an unsigned integer u in free format, followed by a space.
. Print a signed integer n in free format, followed by a space.
? Print signed integer stored in memory a on the top of the parameter stack,

in free format followed by a space.

5.3.4 Parsing

Parsing is always considered a very advanced topic in computer science. However,
because FORTH uses very simple syntax rules, parsing is easy. FORTH input
stream consists of ASCII strings separated by spaces and other white space characters
like tabs, carriage returns, and line feeds. The text interpreter scans the input stream,
parses out strings, and interprets them in sequence. After a string is parsed out of the
input stream, the text interpreter will 'interpret' it; i.e., execute it if it is a valid
command, compile it if the text interpreter is in the compiling mode, and convert it to
a number if the string is not a FORTH command.

parse is the elementary command to do text parsing. From the input stream, which
starts at b1 and is of u1 characters long, it parses out the first text string delimited by
character c . It returns the address b2 and length u2 of the string just parsed out and
the difference n between b1 and b2 . Leading delimiters are skipped over.

The case where the delimiting character is a space (ASCII 32) is special, because this
is when the text interpreter is parsing for valid commands. It thus must skip over
leading space characters. When parse is used to compile string literals, it will use
the double quot character (ASCII 34) as the delimiting character. It the delimiting
character is not space, parse starts scanning immediately, looking for the designated
delimiting character.

;; Parsing

; parse (b u c -- b u delta ; <string>)
; Scan string delimited by c. Return found string a nd its offset.

; COLON 5,"parse"
PARS:
 RCALL TEMP
 RCALL STORE
 RCALL OVER
 RCALL TOR
 RCALL DUPP
 RCALL QBRAN
 .DW PARS8
 SBIW TOSL,1
 RCALL TEMP

 90

 RCALL CAT
 RCALL BLANK
 RCALL EQUAL
 RCALL QBRAN
 .DW PARS3
 RCALL TOR
PARS1:
 RCALL BLANK
 RCALL OVER
 RCALL CAT ;skip leading blanks ONLY
 RCALL SUBB
 RCALL ZLESS
 RCALL INVER
 RCALL QBRAN
 .DW PARS2
 ADIW TOSL,1
 RCALL DONXT
 .DW PARS1
 RCALL RFROM
 RCALL DROP
 RCALL DOLIT
 .DW 0
 RCALL DUPP
 RET
PARS2:
 RCALL RFROM
PARS3:
 RCALL OVER
 RCALL SWAPP
 RCALL TOR
PARS4:
 RCALL TEMP
 RCALL CAT
 RCALL OVER
 RCALL CAT
 RCALL SUBB ;scan for delimiter
 RCALL TEMP
 RCALL CAT
 RCALL BLANK
 RCALL EQUAL
 RCALL QBRAN
 .DW PARS5
 RCALL ZLESS
PARS5:
 RCALL QBRAN
 .DW PARS6
 ADIW TOSL,1
 RCALL DONXT
 .DW PARS4
 RCALL DUPP
 RCALL TOR
 RJMP PARS7
PARS6:
 RCALL RFROM
 RCALL DROP
 RCALL DUPP
 ADIW TOSL,1
 RCALL TOR

 91

PARS7:
 RCALL OVER
 RCALL SUBB
 RCALL RFROM
 RCALL RFROM
 RJMP SUBB
PARS8:
 RCALL OVER
 RCALL RFROM
 RJMP SUBB

; PARSE (c -- b u ; <string>)
; Scan input stream and return counted string delim ited by c.

; COLON 5,"PARSE"
PARSE:
 RCALL TOR
 RCALL TIB
 RCALL INN
 RCALL AT
 RCALL PLUS ;current input buffer pointer
 RCALL NTIB
 RCALL AT
 RCALL INN
 RCALL AT
 RCALL SUBB ;remaining count
 RCALL RFROM
 RCALL PARS
 RCALL INN
 RJMP PSTOR

; .((--)
; Output following string up to next) .

 COLON IMEDD+2,".("
DOTPR:
 RCALL DOLIT
 .DW ')'
 RCALL PARSE
 RJMP TYPES

PARSE Scan the input stream in the Terminal Input Buffer from where >IN
points to, until the end of the buffer, for a string delimited by character c .
It returns the address and length of the string parsed out. PARSE calls
parse to do the detailed works. PARSE is used to implement many
specialized parsing commands to perform different parsing functions.

.(Print the following string till the next) character. It is used to output
text to the serial output device.

; ((--)
; Ignore following string up to next) . A comment.

 COLON IMEDD+1,"("
PAREN:
 RCALL DOLIT

 92

 .DW ')'
 RCALL PARSE
 RJMP DDROP

; \ (--)
; Ignore following text till the end of line.

 COLON IMEDD+1,"\\"
BKSLA:
 RCALL DOLIT
 .DW $D
 RCALL PARSE
 RJMP DDROP

; CHAR (-- c)
; Parse next word and return its first character.

 COLON 4,"CHAR"
CHARR:
 RCALL BLANK
 RCALL PARSE
 RCALL DROP
 RJMP CAT

; TOKEN (-- a ; <string>)
; Parse a word from input stream and copy it to nam e dictionary.

; COLON 5,"TOKEN"
TOKEN:
 RCALL BLANK
 RCALL PARSE
 RCALL DOLIT
 .DW 31
 RCALL MIN
 RCALL HEREE
 RCALL DDUP
 RCALL CSTOR
 RCALL DDUP
 RCALL PLUS
 ADIW TOSL,1
 RCALL DOLIT
 .DW 0
 RCALL SWAPP
 RCALL CSTOR
 ADIW TOSL,1
 RCALL SWAPP
 RCALL UMOVE
 RJMP HEREE

; WORD (c -- a ; <string>)
; Parse a word from input stream and copy it to cod e dictionary.

 COLON 4,"WORD"
WORDD:
 RCALL PARSE
 RCALL HEREE
 RCALL DDUP

 93

 RCALL CSTOR
 RCALL DDUP
 RCALL PLUS
 ADIW TOSL,1
 RCALL DOLIT
 .DW 0
 RCALL SWAPP
 RCALL CSTOR
 ADIW TOSL,1
 RCALL SWAPP
 RCALL CMOVE
 RJMP HEREE

(Discard the following string till the next) character. It is used to place
comments in source code.

\ Discard all characters till end of a line. It is used to insert comment lines
in source code.

CHAR Parse the next string out but returns only the first character in this string.
It gets an ASCII character from the input stream.

TOKEN Parse out the next string delimited by the space character. It then copies
this string as a counted string to the first free area in RAM memory and
returns its address. The length of the string is limited to 31 characters.

WORD Parse out the next string delimited by the ASCII character c . It then
copies this string as a counted string to the first free area in RAM memory
and returns its address. The length of the string is limited to 255 characters.

5.3.5 Dictionary Search

In 328eForth, command records are linearly linked into a dictionary. A command
record contains three fields: a link field holding the name field address of the previous
command record, a name field holding the name as a counted string, and a code field
holding executable code and data. A dictionary search follows the linked list of
records to find a name which matches a text string. It returns the name field address
and the code field address, if a match is found.

The link field of the first command record contains a 0, indicating it is the end of the
linked list. A system variable CONTEXT holds an address pointing to the name field
of the last command record. The dictionary search starts at CONTEXT and
terminates at the first matched name, or at the first command record.

From CONTEXT, we locate the name field of the last command record in the
dictionary. It this name does not match the string to be searched, we can find the
link field of this record, which is 2 bytes less than the name field address. From the
link field, we locate the name field of the next command record. Compare the name
with the search string. And so forth.

;; Dictionary search

; NAME> (na -- ca)
; Return a code address given a name address.

 94

 COLON 5,"NAME>"
NAMET:
 RCALL ICOUNT
 RCALL DOLIT
 .DW $1F
 RCALL ANDD
 RCALL PLUS
 RJMP ALGND

; SAME? (b a u -- b a f \ -0+)
; Compare u bytes in two strings. Return 0 if ident ical.

; COLON 5,"SAME?"
SAMEQ:
 RCALL TWOSL
 RCALL TOR
 RJMP SAME2
SAME1:
 RCALL OVER
 RCALL RAT
 RCALL CELLS
 RCALL PLUS
 RCALL AT
 RCALL OVER
 RCALL RAT
 RCALL CELLS
 RCALL PLUS
 RCALL IAT
 RCALL SUBB
 RCALL QDUP
 RCALL QBRAN
 .DW SAME2
 RCALL RFROM
 RJMP DROP
SAME2:
 RCALL DONXT
 .DW SAME1
 RCALL DOLIT
 .DW 0
 RET

NAME> Convert a name field address in a command record to the code field
address of this command record. Code field address is the name field
address plus length of name plus one, and aligned to the next cell
boundary.

SAME? Compare two strings at addresses a and b for u bytes. It returns a 0 if

two strings are equal. It returns a positive integer if a string is greater
than b string. It returns a negative integer if a string is less than b string.

; find (a va -- ca na | a F)
; Search a vocabulary for a string. Return ca and n a if succeeded.

 95

; COLON 4,"find"
FIND:
 RCALL SWAPP
 RCALL DUPP
 RCALL CAT
 RCALL TEMP
 RCALL STORE
 RCALL DUPP
 RCALL AT
 RCALL TOR
 ADIW TOSL,2 ;va a+2 --
 RCALL SWAPP ;a+2 va --
FIND1:
 RCALL DUPP
 RCALL QBRAN
 .DW FIND6
 RCALL DUPP
 RCALL IAT
 RCALL DOLIT
 .DW $FF3F
 RCALL ANDD
 RCALL RAT
 RCALL XORR
 RCALL QBRAN
 .DW FIND2
 ADIW TOSL,2 ;a+2 va+2 --
 RCALL DOLIT
 .DW -1
 RJMP FIND3
FIND2:
 ADIW TOSL,2 ;a+2 va+2 --
 RCALL TEMP
 RCALL AT
 RCALL SAMEQ
FIND3:
 RJMP FIND4
FIND6:
 RCALL RFROM
 RCALL DROP
 RCALL SWAPP
 SBIW TOSL,2
 RJMP SWAPP
FIND4:
 RCALL QBRAN
 .DW FIND5
 SBIW TOSL,4
 RCALL IAT
 RJMP FIND1
FIND5:
 RCALL RFROM
 RCALL DROP
 RCALL SWAPP
 RCALL DROP
 SBIW TOSL,2
 RCALL DUPP

 RCALL NAMET
 RJMP SWAPP

 96

; NAME? (a -- ca na | a F)
; Search all context vocabularies for a string.

; COLON 5,"NAME?"
NAMEQ:
 RCALL CNTXT
 RCALL AT
 RJMP FIND

find Assume that A count string is at RAM memory address a, and the name
field address of the last command record is in RAM address va . If the
string matches the name of a command, both the code field address and the
name field address of the command record are returned. If the string is
not a valid command, the original string address and a false flag are
returned. find runs the dictionary search very quickly because it first
compares the length byte and the first character in the name field as a 16 bit
integer. In most cases of mismatch, this comparison would fail and the
next record can be reached through the link field. If the first two
characters match, then SAME? is invoked to compare the rest of the name
field, one cell at a time. Since both the target text string and the name
field are null filled to the cell boundary, the comparison can be performed
quickly across the entire name field without worrying about the end
conditions.

NAME? Search the dictionary starting at CONTEXT for a name string at address a.
Return the code field address and name field address if a matched
command is found. Otherwise, return the original string address a and a
false flag.

5.3.6 Terminal Input

The text interpreter interprets source text received from an input device and stored in
the Terminal Input Buffer. To process characters in the Terminal Input Buffer, we
need special commands to deal with the special conditions of backspace character and
carriage return: On top of stack, three special parameters are referenced in many
commands: bot is the Beginning Of the input Buffer, eot is the End Of the input
Buffer, and cur points to the current character in the input buffer.

;; Terminal response

; ̂ H (bot eot cur -- bot eot cur)
; Backup the cursor by one character.

; COLON 2,"^H"
BKSP:
 RCALL TOR
 RCALL OVER
 RCALL RFROM
 RCALL SWAPP

 97

 RCALL OVER
 RCALL XORR
 RCALL QBRAN
 .DW BACK1
 RCALL DOLIT
 .DW BKSPP
 RCALL EMIT
 SBIW TOSL,1
 RCALL BLANK
 RCALL EMIT
 RCALL DOLIT
 .DW BKSPP
 RCALL EMIT
BACK1:
 RET

; TAP (bot eot cur c -- bot eot cur)
; Accept and echo the key stroke and bump the curso r.

; COLON 3,"TAP"
TAP:
 RCALL DUPP
 RCALL EMIT
 RCALL OVER
 RCALL CSTOR
 adiw tosl,1
 ret

; kTAP (bot eot cur c -- bot eot cur)
; Process a key stroke, CR or backspace.

; COLON 4,"kTAP"
KTAP:
 RCALL DUPP
 SBIW TOSL,CRR
 RCALL QBRAN
 .DW KTAP2
 SBIW TOSL,BKSPP
 RCALL QBRAN
 .DW KTAP1
 RCALL BLANK
 RJMP TAP
KTAP1:
 RJMP BKSP
KTAP2:
 RCALL DROP
 RCALL SWAPP
 RCALL DROP
 RJMP DUPP

; accept (b u -- b u)
; Accept characters to input buffer. Return with ac tual count.

; COLON 6,"accept"
ACCEP:
 RCALL OVER
 RCALL PLUS
 RCALL OVER

 98

ACCP1:
 RCALL DDUP
 RCALL XORR
 RCALL QBRAN
 .DW ACCP4
 RCALL KEY
 RCALL DUPP
 RCALL BLANK
 RCALL SUBB
 RCALL DOLIT
 .DW $5F
 RCALL ULESS
 RCALL QBRAN
 .DW ACCP2
 RCALL TAP
 RJMP ACCP3
ACCP2:
 RCALL KTAP
ACCP3:
 RJMP ACCP1
ACCP4:
 RCALL DROP
 RCALL OVER
 RJMP SUBB

^H Process back-space character (ASCII 8). It erases the last character entered,
and decrement the character pointer cur . If cur =bot , do nothing because
you cannot backup beyond beginning of input buffer.

TAP Output a character c to terminal, store c in cur , and increment the character
pointer cur , which points to the current character in the input buffer. bot
and eot are also pointers pointing to the beginning and end of the input
buffer.

kTAP Process character c . bot is pointing at the beginning of the input buffer,
and eot is pointing at the end. cur points to the current character in the
input buffer. The character c is normally stored at cur , which is then
incremented by 1. If c is a carriage-return (ASCII 13), echo a space and
make eot =cur ., thus terminating the input process If c is a back-space
(ASCII 8), erase the last character and decrement cur .

accept Accept u characters into an input buffer starting at address b, or until a
carriage return (ASCII 13) is encountered. The value of u returned is the
actual number of characters received.

; EXPECT (b u --)
; Accept input stream and store count in SPAN.

 COLON 6,"EXPECT"
EXPEC:
 RCALL ACCEP
 RCALL SPAN
 RCALL STORE
 RJMP DROP

 99

; QUERY (--)
; Accept input stream to terminal input buffer.

 COLON 5,"QUERY"
QUERY:
 RCALL TIB
 RCALL DOLIT
 .DW 80
 RCALL ACCEP
 RCALL NTIB
 RCALL STORE
 RCALL DROP
 RCALL DOLIT
 .DW 0
 RCALL INN
 RJMP STORE

EXPECT Accept u characters into an input buffer starting at b, or until a carriage
return is encountered. The number of characters received is stored in
system variable SPAN.

QUERY Accept up to 80 characters from the input device to the Terminal Input
Buffer. It also prepares the Terminal Input Buffer for parsing by setting
#TIB to the length of the input text stream, and clearing >IN which
points to the beginning of the Terminal Input Buffer.

5.4 Interpreter

5.4.1 Error Handling

When error occurred, it is usually because the text interpreter encounters a string
which can not be interpreted or processed. This string is usually stored in a buffer in
RAM memory.

;; Error handling

; ERROR (a --)
; Return address of a null string with zero count.

; COLON 5,"ERROR"
ERROR:
 RCALL SPACE
 RCALL COUNT
 RCALL TYPES
 RCALL DOLIT
 .DW $3F
 RCALL EMIT
 RCALL CR
 RCALL EMPTY_BUF
 ldi yl,low(SPP)
 ldi yh,high(SPP)
 RJMP QUIT

 100

; abort" (f --)
; Run time routine of ABORT" . Abort with a message .

; COLON COMPO+6,"abort"
; .DB '"'
ABORQ:
 RCALL QBRAN
 .DW ABOR1 ;text flag
 RCALL DOSTR
 RCALL ICOUNT ;pass error string
 RCALL ITYPES
 RCALL CR
 RJMP QUIT
ABOR1:
 RCALL DOSTR
 RJMP DROP

ERROR Print the string in RAM memory located at address a, followed by a ?
mark and aborts. 'Abort' means flushing all flash memory buffers,
clearing the parameter stack, and returns to the text interpreter loop QUIT.

abort" It is compiled with an error message string in a compound command.
When abort" is executed, it examines the top item on the parameter
stack. It the flag is true, print out the following error message and
QUIT; otherwise, skip over the error message and continue execution the
next token.

5.4.2 Interpreter

Text interpreter in FORTH is like a conventional operating system of a computer. It
is the primary interface a user uses to get the computer to do work. Since FORTH
uses very simple syntax rule--commands are separated by spaces, the text interpreter
is also very simple. It accepts a line of text from the terminal, parses out a command
delimited by spaces, locates the command in the dictionary and then executes it. The
process is repeated until the input text is exhausted. Then the text interpreter waits
for another line of text and interprets it again. This cycle repeats until you are
exhausted and turns off the computer.

In 328eForth, the text interpreter is coded as the command QUIT. QUIT contains an
infinite loop which repeats the QUERY-EVAL command pair. QUERY accepts a line
of text from the input terminal. EVAL interprets the text one command at a time till
the end of the text line.

;; The text interpreter

; $INTERPRET (a --)
; Interpret a word. If failed, try to convert it to an integer.

; COLON 10,"$INTERPRET"
INTER:
 RCALL NAMEQ
 RCALL QDUP ;?defined

 101

 RCALL QBRAN
 .DW INTE1
 RCALL IAT
 RCALL DOLIT
 .DW COMPO
 RCALL ANDD ;?compile only lexicon bits
 RCALL ABORQ
 .DB 13," compile only"
 RCALL EXECU
 RET ;execute defined word
INTE1:
 RCALL NUMBQ
 RCALL QBRAN
 .DW INTE2
 RET
INTE2:
 RJMP ERROR ;error

; [(--)
; Start the text interpreter.

 COLON IMEDD+1,"["
LBRAC:
 RCALL DOLIT
 .DW INTER*2
 RCALL TEVAL
 RJMP STORE

; .OK (--)
; Display "ok" only while interpreting.

; COLON 3,".OK"
DOTOK:
 RCALL DOLIT
 .DW INTER*2
 RCALL TEVAL
 RCALL AT
 RCALL EQUAL
 RCALL QBRAN
 .DW DOTO1
 RCALL DOTQP
 .DB 2,"ok"
DOTO1: RJMP CR

$INTERPRET Execute a command whose name string is stored at address a on the
parameter stack. If the string is not a valid command, convert it to a
number. Failing the numeric conversion, execute ERROR and return
to QUIT.

[Activate the text interpreter by storing the code field address of
$INTERPRET into the variable 'EVAL , which is executed in EVAL
while the text interpreter is in the interpretive mode.

.OK Print the familiar ok> prompting message after executing to the end
of a line. The message ok> is printed only when the text
interpreter is in the interpretive mode. While compiling, the prompt

 102

is suppressed.

; ?STACK (--)
; Abort if the data stack underflows.

; COLON 6,"?STACK"
QSTAC:
 RCALL DEPTH
 RCALL ZLESS ;check only for underflow
 RCALL ABORQ
 .DB 10," underflow"
 RET

; EVAL (--)
; Interpret the input stream.

; COLON 4,"EVAL"
EVAL:
EVAL1: RCALL TOKEN
 RCALL DUPP
 RCALL CAT ;?input stream empty
 RCALL QBRAN
 .DW EVAL2
 RCALL TEVAL
 RCALL ATEXE
; RCALL INTER
 RCALL QSTAC ;evaluate input, check stack
 RJMP EVAL1
EVAL2:
 RCALL DROP
 RJMP DOTOK

;; Shell

; QUIT (--)
; Reset return stack pointer and start text interpr eter.

 COLON 4,"QUIT"
QUIT:
 ldi xl,low(RPP)
 out_ SPL,xl
 ldi xh,high(RPP)
 out_ SPH,xh
 RCALL DOLIT
 .DW TIBB
 RCALL TTIB
 RCALL STORE
QUIT1:
 RCALL LBRAC ;start interpretation
QUIT2:
 RCALL QUERY ;get input
 RCALL EVAL
 RJMP QUIT2 ;continue till error

?STACK Check for stack underflow. Abort, resetting the parameter stack pointer,

 103

if the stack depth is negative.
EVAL It is contained in the text interpreter loop which parses commands from the

input stream and invokes whatever token in 'EVAL to process the
commands, either execute it with $INTERPRET or compile it with
$COMPILE.

QUIT It is the operating system, the text interpreter, or a shell, of the 328eForth
system. It is an infinite loop eForth will never get out. It uses QUERY
to accept a line of commands from the input terminal and then lets EVAL
to parse out the commands and execute them. After a line is processed, it
displays an ok> message and wait for the next line of commands. When
an error occurred during execution, it prints the string which caused the
error as an error message. After the error is reported, it re-initializes the
system by clearing the return stack and comes back to receive the next line
of commands. Because the behavior of EVAL can be changed by storing
either $INTERPRET or $COMPILE into 'EVAL , QUIT exhibits the dual
nature of a text interpreter and a compiler.

5.4.3 Tools

328eForth is a very small system and only a very small set of tool commands are
provided. Nevertheless, this set of tool commands is powerful enough to help you
debug new commands he adds to the system. They are also very interesting
programming examples on how to use the commands in eForth to build applications.

Generally, the tool commands present information stored in different parts of the CPU
in appropriate formats to let you inspect the results as he executes commands in the
eForth system and commands he defined himself. The tool commands include
memory dump, stack dump, dictionary dump, etc.

; ' (-- ca)
; Search context vocabularies for the next word in input stream.

 COLON 1,"'"
TICK:
 RCALL TOKEN
 RCALL NAMEQ ;?defined
 RCALL QBRAN
 .DW TICK1
 RET ;yes, push code address
TICK1:
 RJMP ERROR ;no, error

;; Tools

; DUMP (a --)
; Dump 128 bytes from a, in a formatted manner.

 COLON 4,"DUMP"
DUMP:
 RCALL DOLIT
 .DW 7

 104

 RCALL TOR ;start count down loop
DUMP1: RCALL CR
 RCALL DUPP
 RCALL DOLIT
 .DW 5
 RCALL UDOTR
 RCALL SPACE
 RCALL DOLIT
 .DW 15
 RCALL TOR
DUMP2:
 RCALL COUNT
 RCALL DOLIT
 .DW 3
 RCALL UDOTR
 RCALL DONXT ;display printable characters
 .DW DUMP2
 RCALL SPACE
 RCALL DUPP
 RCALL DOLIT
 .DW 16
 RCALL SUBB
 RCALL DOLIT
 .DW 16
 RCALL TYPES
 RCALL DONXT
 .DW DUMP1 ;loop till done
 RJMP DROP

' Search the dictionary for the following string. If the string is a valid
command, return its code field address. If the string is not a valid
command, print a ? mark.

DUMP Print 128 bytes of data starting at RAM address b to the terminal. It dumps
16 bytes to a line. A line begins with the address of the first byte, followed
by 16 bytes shown in hex, 3 columns per bytes. At the end of a line are the
16 bytes shown in ASCII characters. Non-printable characters are replaced
by underscores (ASCII 95). ATmega328P has memory organized in 128
byte pages. It is convenient to dump memory one page at a time. DUMP
commands in most FORTH system takes and address and a length as
parameters to dump a memory array.

; IDUMP (a --)
; Dump u bytes from a, in a formatted manner.

 COLON 5,"IDUMP"
IDUMP:
 RCALL DOLIT
 .DW 7
 RCALL TOR ;start count down loop
IDUMP1:
 RCALL CR
 RCALL DUPP
 RCALL DOLIT

 105

 .DW 5
 RCALL UDOTR
 RCALL SPACE
 RCALL DOLIT
 .DW 15
 RCALL TOR
IDUMP2:
 RCALL ICOUNT
 RCALL DOLIT
 .DW 3
 RCALL UDOTR
 RCALL DONXT ;display printable characters
 .DW IDUMP2
 RCALL SPACE
 RCALL DUPP
 RCALL DOLIT
 .DW 16
 RCALL SUBB
 RCALL DOLIT
 .DW 16
 RCALL ITYPES
 RCALL DONXT
 .DW IDUMP1 ;loop till done
 RJMP DROP

; .S (... -- ...)
; Display the contents of the data stack.

 COLON 2,".S"
DOTS:
 RCALL DEPTH ;stack depth
 RCALL TOR ;start count down loop
 RJMP DOTS2 ;skip first pass
DOTS1:
 RCALL RAT
 RCALL PICK
 RCALL DOT ;index stack, display contents
DOTS2:
 RCALL DONXT
 .DW DOTS1 ;loop till done
 RCALL DOTQP
 .DB 4," <sp"
 RET

IDUMP Print 128 bytes of data starting at flash address a to the terminal. It dumps
16 bytes to a line. A line begins with the address of the first byte,
followed by 16 bytes shown in hex, 3 columns per bytes. At the end of a
line are the 16 bytes shown in ASCII characters. Non-printable characters
are replaced by underscores (ASCII 95). ATmega328P organizes the flash
memory in pages of 128 bytes. It is convenient to dump flash memory
one page at a time. ATmega328P uses 16-bit machine instructions, and
addresses flash memory using 16-bit cell addresses. I choose to address
flash memory also in bytes, and IDUMP displays byte addresses. Be
aware of this difference when you read machine instructions.

 106

One important discipline in learning FORTH is to learn how to use the parameter
stack effectively. All commands must consume their input parameters on the stack
and leave only their intended results on the stack. Sloppy usage of the parameter
stack is often the cause of bugs which are very difficult to detect later, as unexpected
items left on the stack could result in unpredictable behavior. .S should be used
liberally during programming and debugging to ensure that the correct parameters are
left on the parameter stack.

The parameter stack is the center for arithmetic and logic operations. It is where
commands receive their parameters and also where they left their results. In
debugging a new command which may use stack items and leave items on the stack,
the best was to debug it is to inspect the parameter stack, before and after its
execution. To inspect the parameter stack non-destructively, use the command .S .

.S Print the contents of the parameter stack in the free format. The bottom of

the stack is aligned to the left margin. The top item is shown towards the
left and followed by the characters <sp . .S does not change the data
stack so it can be used to inspect the data stack non-destructively at any
time.

The dictionary contains all command records defined in the system, ready for
execution and compilation. WORDS command allows you to examine the dictionary
and to look for the correct names of commands in case you are not sure of their
spellings. WORDS follows the dictionary link in the system variable CONTEXT and
displays the names of all commands in the dictionary. The dictionary links can be
traced easily because the link field in the header of a command points to the name
field of the previous command, and the link field is two bytes below the
corresponding name field.

>NAME finds the name field address of a word from the corresponding code field
address in a command record. If the command does not exist in the dictionary, it
returns a false flag. It is the mirror image of the command NAME>, which returns the
code field address of a command from its name field address. It is difficult to scan
backward from code field to locate the beginning of the name field, because we do not
know how long the name field is. >NAME is therefore more complicated because the
entire dictionary must be searched to locate its name field.

; >NAME (ca -- na | F)
; Convert code address to a name address.

; COLON 5,">NAME"
TNAME:
 RCALL TOR
 RCALL CNTXT
 RCALL AT ;na
TNAM1:
 RCALL DUPP ;na na
 RCALL QBRAN
 .DW TNAM2

 107

 RCALL DUPP ;na na
 RCALL NAMET ;na ca
 RCALL RAT ;na ca ca
 RCALL XORR ;na f
 RCALL QBRAN
 .DW TNAM2
 SBIW TOSL,2 ;la
 RCALL IAT ;na'
 RCALL BRAN
 .DW TNAM1
TNAM2:
 RCALL RFROM ;na or 0
 RJMP DROP

; .ID (na --)
; Display the name at address.

; COLON 3,".ID"
DOTID:
 RCALL ICOUNT
 RCALL DOLIT
 .DW 31
 RCALL ANDD
 RJMP ITYPES

; WORDS (--)
; Display the names in the context vocabulary.

 COLON 5,"WORDS"
WORDS:
 RCALL CR
 RCALL CNTXT
 RCALL AT ;na
WORS1:
 RCALL QDUP ;end of list?
 RCALL QBRAN
 .DW WORS2
 RCALL DUPP ;na na
 RCALL SPACE
 RCALL DOTID ;display a name
 SBIW TOSL,2 ;la
 RCALL IAT ;na'
 RCALL BRAN
 .DW WORS1
WORS2:
 RET

>NAME Return a code field address, xt , of a command from its name field
address, na . If xt is not a valid code field address, return 0. It follows
the linked list of the dictionary, and from every name field address we can
get a corresponding code field address. If this address is not the same as
xt , we go to the name field of the next command. If xt is a valid code
field address, we surely will find it. If the entire dictionary is searched
and xt is not found, it is not a valid code field address.

.ID Display the name of a command, given the name field address of this
command. It replaces non-printable characters in a name by

 108

under-scores.
WORDS Display all the names in the dictionary. The order of words is reversed

from the compiled order. The last defined command is shown first.

5.4.4 Startup

After the computer is turned on, it executes some native machine code at START to
set up the CPU hardware. Then it jumps to COLD to initialize the 328eForth system
which is the FORTH Virtual Machine. It finally jumps to QUIT and starts the text
interpreter. COLD and QUIT are the topmost layers of 328eForth system.

Because all the system variable in 328eForth are initialized from a data array in flash
memory, 328eForth is eminently ROMable and suitable for embedded applications in
ATmega328P. Before falling into QUIT to enter into the text interpreter loop, COLD
command executes a boot routine whose code address is stored in system variable
'BOOT. This code address can be vectored to an application command which
defines the proper behavior of the system on power-up and on reset. Initially
'BOOT contains the code field address of hi .

;; Hardware reset

; hi (--)
; Display the sign-on message of eForth.

; COLON 2,"hi"
HI:
; RCALL STOIO
 RCALL CR
 RCALL DOTQP ;initialize I/O
 .DB 15,"328eForth v3.01" ;model
 RJMP CR

; COLD (--)
; The hilevel cold start sequence.

 COLON 4,"COLD"
COLD:
COLD1:
 RCALL STOIO
 RCALL DOLIT
 .DW $100
 RCALL DUPP
 RCALL READ ;initialize user area
 RCALL DOLIT ;init older buffer
 .DW OLDER
 RCALL AT ;
 RCALL READ_FLASH
 RCALL SWITCH
 RCALL DOLIT ;init newer buffer
 .DW OLDER
 RCALL AT ;
 RCALL READ_FLASH
 RCALL SWITCH

 109

 RCALL DDROP
 RCALL TBOOT
 RCALL ATEXE
 RJMP QUIT ;start interpretation

hi The default start-up routine in 328eForth. It initializes the serial I/O device
and then displays a sign-on message. This is where you can customize his
application. From here one can initialize the system to start his own
application.

'BOOT A system variable loaded at RAM memory address $100. It is originally
vectored to hi .

COLD A high level compound command executed upon power-up, called from the
low level START routine. Its initializes the system variables, executes the
boot-up routine vectored through 'BOOT, and then falls into the text
interpreter loop QUIT.

5.5 Compiler

ATmega328P, with its Harvard architecture, is very hostile to FORTH. It is difficult
to extend an interactive FORTH system in the flash memory. You can change erased
bits from 1 to 0. But, when you want to change bit 0 to bit 1, you have to erase a
whole page. The flash memory in ATmega328P is specified to endure 10,000 erase
cycles. You have to be very careful about these erase cycles when you are
programming in FORTH, because you will write and re-write many small commands
many, many times until you get them right. To minimize the erase cycles and to
extend the life of flash memory, I took out the big gun in Chuck Moore's arsenal: the
ping-pong BLOCK buffers.

I use two 128 byte page buffers to store compiled code. New FORTH commands are
compiled into these buffers. Two buffers are necessary so that forward references
can be resolved across a page boundary. Otherwise, many more erase cycles would
be wasted when building structures in adjacent pages of flash memory. Only when
both buffers are full, the least recently used buffer is flushed into the flash memory,
before a new page of flash memory is read into this buffer.

The disadvantage is that after a new command is defined, you cannot execute it unless
it is first flushed. Executing a command in a buffer will definitely crash the system.
Always remember to include a FLUSH command at the end of a source code file.
When you are compiling lines of code interactively, remember to do a FLUSH before
executing any command you just typed in. Otherwise, be prepared for a crash and
reload 328eForth system from AVR Studio 4. This error will happen, believe me,
and it is distressing. But, remember we are dealing with a microcontroller, and its
flash memory can endure only 10,000 erase cycles.

5.5.1 Access Flash Memory

; Flash memory read, write, and erase.

 110

.equ PAGESIZEB = PAGESIZE*2 ;PAGESIZEB is page siz e in BYTES, not
words
.def spmcrval = r20
.def looplo = r22
.def loophi = r23

; Page Erase
; ERASE (a --)
; Erase a page of flash memory

 COLON 5,"ERASE"
ERASE:
 movw zl,tosl
 loadtos
ERASE_1:
 ldi spmcrval, (1<<PGERS) | (1<<SELFPRGEN)
 rcall Do_spm
; re-enable the RWW section
 ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
 rjmp Do_spm

; Page Write
; WRITE (ram flash --)
; transfer data from RAM to Flash page buffer

 COLON 5,"WRITE"
WRITE:
 movw zl, tosl
 loadtos
 movw xl, tosl
 loadtos
WRITE_1:
 ldi looplo, low(PAGESIZEB) ;init loop variable
Wrloop:
 ld r0, X+
 ld r1, X+
 ldi spmcrval, (1<<SELFPRGEN)
 rcall Do_spm
 adiw ZL, 2
 subi looplo, 2 ;use subi for PAGESIZEB<=256
 brne Wrloop
; execute Page Write
 subi ZL, low(PAGESIZEB) ;restore pointer
 sbci ZH, high(PAGESIZEB) ;not required for PAGESI ZEB<=256
 ldi spmcrval, (1<<PGWRT) | (1<<SELFPRGEN)
 rcall Do_spm
; re-enable the RWW section
 ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
 rjmp Do_spm

; Page Read
; READ (flash ram --)
; transfer data from Flash to RAM page buffer

 COLON 4,"READ"
READ:
 movw xl,tosl
 loadtos

 111

 movw zl,tosl
 loadtos
READ_1:
; read back and check, optional
 ldi looplo, low(PAGESIZEB) ;init loop variable
Rdloop:
 lpm r0, Z+
 st X+, r0
 subi looplo, 1 ;use subi for PAGESIZEB<=256
 brne Rdloop
 ret

Do_spm:
; check for previous SPM complete
Wait_spm:
 in temp1, SPMCSR
 sbrc temp1, SELFPRGEN
 rjmp Wait_spm
; SPM timed sequence
 out SPMCSR, spmcrval
 spm
 ret

ERASE Erase one 128 byte page of flash memory. The page address a is on the
top of the parameter stack.

WRITE Copy the contents of one 128 byte page in RAM memory, starting at RAM
address ram, to an page of flash memory, starting at flash address flash .
All addresses are byte addresses.

READ Copy the contents of one 128 byte page in flash memory, starting at flash
address flash , to an page of RAM memory, starting at RAM address ram.
All addresses are byte addresses.

ERASE, WRITE, and READ commands are all adapted from sample code listed in the
AVR Data Book published by Atmel Corp: doc8271.pdf, "8-Bit AVR Microcontroller
with 4/8/16/32K Bytes In-System Programmable Flash".

5.5.2 Buffers and Pointers

To 128-byte buffers are allocated in the high end of RAM memory: BUF0 at $800,
and BUF1 at $880, for flash memory accessing. Two buffer pointers are allocated at
low RAM memory: NEW at $11C and OLD at $1E. The buffer pointers have the
following format:

 112

The buffer pointer actually hold the address of a byte in flash memory. Bits 14-7 are
for the page address, and bits 6-0 are byte address within a page. Since
ATmega328P has only 32 KB of flash memory, Bit 15 is not used for addressing, and
is reserved for a Dirty Bit which indicates whether the contents in this buffer was
modified. If Dirty Bit is set, its contents must be flushed back into the flash memory
when this buffer is allocated for another page of flash memory. If this Dirty Bit is
cleared, the buffer has not been modified, and another page can be loaded into this
buffer immediately.

As flash memory is accessed one page at a time, the Byte Address field is always
cleared. The least significant Bit 0 is used to determine which physical buffer is
associated with this buffer pointer. Bit 0 is cleared when the buffer pointer points to
BUF0 at $800. Bit 0 is set when the buffer pointer points to BUF1 at $880.

Buffer pointer NEW at $11C always points to the buffer which is most recently
accessed, and buffer pointer OLD at $11E always points to the buffer with is accessed
earlier. When we need to access a new page of flash memory, it is always read into
the buffer pointed to by OLD. If data in OLD was modified and its Dirty Bit is set,
data in the old buffer must be flushed to flash memory before a new page of data is
read in.

; I@ (a -- w)
; Push flash memory cell to the data stack.
 CODE 2,"I@"
IAT:
 RCALL DOLIT
 .DW NEWER
 RCALL BUFQ ;n a new?
 RCALL QBRAN ;if a=new, fetch n in new_buf
 .DW IAT1 ;else, a=old?
 RCALL DOLIT ;n a a old
 .DW OLDER
 RCALL BUFQ ;n a old?
 RCALL QBRAN ;if a=old, fetch n in old_buf
 .DW IAT2
 movw zl, tosl ;else, fetch from flash
 lpm tosl, z+
 lpm tosh, z+
 RET
IAT1:
 RCALL DOLIT
 .DW NEWER
 RJMP IAT3
IAT2:
 RCALL DOLIT
 .DW OLDER
IAT3:
 RCALL BUFAT
 RJMP AT

; IC@ (a -- w)
; Push flash memory byte to the data stack.
 CODE 3,"IC@"

 113

ICAT:
 RCALL DOLIT
 .DW NEWER
 RCALL BUFQ ;n a new?
 RCALL QBRAN ;if a=new, fetch n in new_buf
 .DW ICAT1 ;else, a=old?
 RCALL DOLIT ;n a a old
 .DW OLDER
 RCALL BUFQ ;n a old?
 RCALL QBRAN ;if a=old, fetch n in old_buf
 .DW ICAT2
 movw zl, tosl ;else, fetch from flash
 clr tosh
 lpm tosl, Z
 RET
ICAT1:
 RCALL DOLIT
 .DW NEWER
 RJMP ICAT3
ICAT2:
 RCALL DOLIT
 .DW OLDER
ICAT3:
 RCALL BUFAT
 RJMP CAT

I@ Fetch 16 bit data from a flash cell memory, whose byte address a is on the
top of the parameter stack. It first sees if this data is in the NEW flash
buffer. If true, fetch data from NEW buffer. If not true, it then sees if this
data is in the OLD buffer. If true, fetch data from OLD buffer, and also
switch NEW and OLD buffers. If no true, data is in flash memory, and
fetch it from flash memory directly. Cell memory address a is a byte
address.

IC@ Fetch 8 bit data from flash memory, whose byte address a is on the top of
the parameter stack. It first sees if this data is in the NEW flash buffer. If
true, fetch data from NEW buffer. If not true, it then sees if this data is in
the OLD buffer. If true, fetch data from OLD buffer, and also switch NEW
and OLD buffers. If no true, data is in flash memory, and fetch it from
flash memory directly.

; CODE 6,"BUFFER" ; ptr -- buf
BUFFER:
 RCALL DOLIT
 .DW $1
 RCALL ANDD
 RCALL QBRAN
 .DW BUF_1
 RCALL DOLIT
 .DW BUF1
 RET
BUF_1:
 RCALL DOLIT

 114

 .DW BUF0
 RET

; CODE 6,"BUF?" ; a new/old -- f
BUFQ:
 RCALL AT
 RCALL OVER
 RCALL XORR
 RCALL DOLIT
 .DW $7F80
 RCALL ANDD
 RET

; CODE 6,"BUF@" ; a new/old -- buf_addr
BUFAT:
 RCALL AT
 RCALL BUFFER
 RCALL SWAPP
 RCALL DOLIT
 .DW $7F
 RCALL ANDD
 RJMP XORR

BUFFER Convert a buffer pointer ptr to the address of the flash buffer buf ,
associated with the buffer pointer.

BUF? Determine whether the data at address a is inside the buffer whose pointer
new/old is on the top of the parameter stack. It compares Bits 14-7 in
the address and in the buffer pointer.

BUF@ Convert the flash memory address a to the corresponding address in the
buffer pointed to by the buffer pointer new/old on the top of the
parameter stack.

; I! (w a --)
; Store w to flash memory byte location.

 CODE 2,"I!"
ISTOR: ;a=new?
 RCALL DOLIT
 .DW NEWER
 RCALL BUFQ ;n a a new_ptr
 RCALL QBRAN ;if a=new, store n in new_buf
 .DW ISTOR5 ;else, a=old?
;
 RCALL DOLIT ;n a a old
 .DW OLDER
 RCALL BUFQ ;n a a old_ptr
 RCALL QBRAN ;if a=old, switch ptrs, store n in new _buf
 .DW ISTOR4 ;else, flush old_buf

 RCALL DOLIT ;n a old
 .DW OLDER
 RCALL AT ;n a old_ptr
 RCALL DOLIT ;n a dirty?
 .DW $8000

 115

 RCALL ANDD
 RCALL QBRAN ;if not dirty, go read flash data into old_buf
 .DW ISTOR2 ;else, flush old_buf to flash

ISTOR1: RCALL FLUSH_OLD
ISTOR2: RCALL READ_FLASH
ISTOR3: RCALL UPDATE_OLD
ISTOR4: RCALL SWITCH
ISTOR5: RJMP UPDATE_NEW

; CODE 5,"FLUSH" ; --
FLUSH_OLD:
 RCALL DOLIT ;old
 .DW OLDER
 RCALL AT ;old_ptr
 RCALL DUPP ;old_ptr old_ptr
 RCALL DOLIT
 .DW $7F80
 RCALL ANDD ;old_ptr flash_addr
 RCALL DUPP ;old_ptr flash_addr flash_addr
 RCALL ERASE ;old_ptr flash_addr
;
 RCALL SWAPP ;flash_addr old_ptr
 RCALL BUFFER ;flash_addr buf
 RCALL SWAPP ;buf flash_addr
 RJMP WRITE

I! Store the data w in flash memory address a.
FLUSH_OLD First erase the flash memory page corresponding to the page stored in

OLD buffer, and copy contents in the OLD buffer to this page in flash
memory.

5.5.3 Write to Flash

I! is the most interesting command in the flash memory command set, and needs a
more detailed explanation. Its action follows the follow steps:
1. If the flash page addressed by a is in the NEW buffer, go to step 8.
2. If the flash page addressed by a is in the OLD buffer, go to step 7.
3. If the flash page addressed by a is not in either buffer, test the Dirty Bit in OLD
buffer pointer. If the Dirty Bit is not set, go to step 5.
4. OLD buffer is dirty, flush its contents. Continue to step 5.
5. Read the flash memory page pointed to by address a into the OLD buffer.
6. Update OLD buffer pointer with the page address derived from a. Clear the
Dirty Bit in OLD buffer pointer.
7. Switch contents in OLD and NEW, so that the OLD buffer becomes the most
recently accessed buffer.
8. Write data w into NEW buffer to the address corresponding to a, and set the Dirty
Bit in the NEW buffer pointer.

This scheme of data buffering was first used by Chuck Moore in his implementation
of virtual memory to access data stored on magnetic tapes and on magnetic disks.
He divided all external storage media into blocks of 1024 bytes and manage them

 116

with buffers in RAM. His scheme minimized accesses to external media and
achieved execution speed unheard of on computers of the earlier eras.

; CODE 4,"@OLD" ;a -- a
READ_FLASH: ;read new flash data into old_buf
 RCALL DOLIT ;a old
 .DW OLDER
 RCALL AT ;a old_ptr
 RCALL BUFFER ;a buf
 RCALL OVER ;a buf a
 RCALL DOLIT
 .DW $7F80
 RCALL ANDD ;a buf flash_addr
 RCALL SWAPP ;a flash_addr buf
 RJMP READ ;a

; CODE 4,"!OLD" ;a --
UPDATE_OLD: ;preserve buf? bit
 RCALL DUPP ;a a
 RCALL DOLIT ;
 .DW $7F80
 RCALL ANDD ;a page_addr
 RCALL DOLIT
 .DW OLDER ;a page_addr old
 RCALL SWAPP ;a old page_addr
 RCALL OVER ;a old page_addr old
 RCALL AT ;a old page_addr old_ptr
 RCALL DOLIT
 .DW $1
 RCALL ANDD ;a old page_addr buf?
 RCALL ORR ;a old updates_old_ptr
 RCALL SWAPP ;a old_ptr old
 RJMP STORE ;a

; CODE 6,"SWITCH" ; --
SWITCH:
 RCALL DOLIT ;old
 .DW OLDER
 RCALL AT ;old_ptr
 RCALL DOLIT ;old_ptr new
 .DW NEWER
 RCALL AT ;old_ptr new_ptr
 RCALL DOLIT ;old_ptr new_ptr old
 .DW OLDER
 RCALL STORE ;old_ptr
 RCALL DOLIT ;old_ptr new
 .DW NEWER
 RJMP STORE ;

; CODE 4,"!NEW" ;n a --
UPDATE_NEW: ;write data to new buufer, set dirty bit
 RCALL DOLIT ;n a 7e
 .DW $7E
 RCALL ANDD ;n disp
 RCALL DOLIT ;n disp new
 .DW NEWER

 117

 RCALL AT ;n disp new_ptr
 RCALL BUFFER ;n disp buf
UPDAT1:
 RCALL ORR ;n buff_addr
 RCALL STORE ;update word in new_buf

 RCALL DOLIT ;set dirty bit in newer
 .DW NEWER
 RCALL DUPP ;newer newer
 RCALL AT ;newer new_ptr
 RCALL DOLIT
 .DW $8000
 RCALL ORR ;newer new_ptr_dirty
 RCALL SWAPP
 RJMP STORE ;new buf is dirty now

; EMPTY-BUFFERS (--)
 CODE 5,"FLUSH"

EMPTY_BUF:
 RCALL EMPTY_OLD
 RCALL SWITCH
 RCALL EMPTY_OLD
 RJMP SWITCH

; EMPTY_OLD ;flush old buffer if it is dirty

EMPTY_OLD:
 RCALL DOLIT ;old
 .DW OLDER
 RCALL AT ;old_ptr
 RCALL DUPP ;old_ptr old_ptr
 RCALL DOLIT ;
 .DW $8000
 RCALL ANDD ;old_ptr dirty?
 RCALL QBRAN ;if not dirty, exit
 .DW EMPTY_1 ;else, flush old_buf
;
 RCALL DOLIT ;old_ptr
 .DW $7FFF
 RCALL ANDD ;old_ptr, dirty bit cleared
 RCALL DOLIT
 .DW OLDER
 RCALL STORE ;old_ptr flash_addr
 RJMP FLUSH_OLD
EMPTY_1:
 RJMP DROP

@OLD Read one page of the flash memory pointed to a address a into the
OLD buffer.

!OLD Update the OLD buffer pointer so that it now had the page address
corresponding to flash memory address a.

SWTICH Exchange the contents of NEW and OLD buffer pointers, so that the
OLD buffer becomes NEW, the most recently accessed buffer.

!NEW Write new data w into NEW buffer at aa address corresponding to

 118

flash memory address a. Set Dirty Bit in NEW buffer pointer.
EMPTY_OLD Flush OLD buffer to flash memory if it is dirty.
FLUSH Flush both buffers back to flash memory.

5.5.4 Compiler Commands

The bootloader section in the flash memory of ATmega328P has only 4 KB space,
which is not enough to host the entire 328eForth system. I only managed to squeeze
the text interpreter into the bootloader section. Assembler now continues assembly
at flash memory byte address $200. The correct cell address is $100.

;== =============
; Compiler

.org $100

; 1+ (a -- a)
; Add 1 to address.

 COLON 2,"1+"
ONEP:
 adiw tosl,1
 ret

; 1- (a -- a)
; Subtract 1 from address.

 COLON 2,"1-"
ONEM:
 sbiw tosl,1
 ret

; 2+ (a -- a)
; Add cell size in byte to address.

 COLON 2,"2+"
CELLP:
 adiw tosl,2
 ret

; 2- (a -- a)
; Subtract cell size in byte from address.

 COLON 2,"2-"
CELLM:
 sbiw tosl,2
 ret

; > (n1 n2 -- flag) Compare
; compares two values (signed)

 COLON 1,">"

 119

GREATER:
 ld temp2, Y+
 ld temp3, Y+
 cp temp2, tosl
 cpc temp3, tosh
 rjmp DGRE1

; D> (d1 d2 -- flag) Compare
; compares two d values (signed)

 COLON 2,"D>"
DGRE:
 ld temp0, Y+
 ld temp1, Y+
 ld temp2, Y+
 ld temp3, Y+
 ld temp4, Y+
 ld temp5, Y+
 cp temp4, temp0
 cpc temp5, temp1
 cpc temp2, tosl
 cpc temp3, tosh
DGRE1:
 movw tosl,zerol
 brlt DGRE2
 brbs 1, DGRE2
 sbiw tosl,1
 ret
DGRE2:
 ret

; D+ (d1 d2 -- d3) Arithmetics
; add double cell values

 COLON 2,"D+"
DPLUS:
 ld temp2, Y+
 ld temp3, Y+
 ld temp4, Y+
 ld temp5, Y+
 ld temp6, Y+
 ld temp7, Y+
 add temp2, temp6
 adc temp3, temp7
 adc tosl, temp4
 adc tosh, temp5
 st -Y, temp3
 st -Y, temp2
 ret

; D- (d1 d2 -- d3) Arithmetics
; subtract double cell values

 COLON 2,"D-"
DMINUS:
 ld temp2, Y+
 ld temp3, Y+
 ld temp4, Y+

 120

 ld temp5, Y+
 ld temp6, Y+
 ld temp7, Y+
 sub temp6, temp2
 sbc temp7, temp3
 sbc temp4, tosl
 sbc temp5, tosh
 st -Y, temp7
 st -Y, temp6
 movw tosl, temp4
 ret

1+ Increment the top item on the parameter stack by 1.
1- Decrement the top item on the parameter stack by 1.
2+ Increment the top item on the parameter stack by 2.
2- Decrement the top item on the parameter stack by 2.
> Compare the top two items of the parameter stack. Return a true flag if the

second item is greater than the top item. Stack items are assumed to be
signed integers

D> Compare the top four items of the parameter stack as two signed double
integers. Return a true flag if the second double integer is greater than the
top doble integer. Stack items are assumed to be signed double integers

D+ Add the top four items of the parameter stack as two signed double integers.
Return a signed double integer sum.

D- Subtract the top four items of the parameter stack as two signed double
integers. Subtract top double integer from the second double integer, and
return the difference as a signed double integer.

; ALLOT (n --)
; Allocate n bytes to the code dictionary.

 COLON 5,"ALLOT"
ALLOT:
 CALL DPP
 JMP PSTOR

; IALLOT (n --)
; Allocate n bytes to the code dictionary.

 COLON 6,"IALLOT"
IALLOT:
 CALL CPP
 JMP PSTOR

; , (w --)
; Compile an integer into the code dictionary.

 COLON 1,","
COMMA:
 CALL CPP
 CALL AT
 CALL DUPP
 CALL CELLP ;cell boundary

 121

 CALL CPP
 CALL STORE
 JMP ISTOR

; call, (ca --)
; Assemble a call instruction to ca.

; COLON 5,"call,"
CALLC:
 CALL DOLIT
 .DW CALLL
 CALL COMMA
 RJMP COMMA ;328 long call

; [COMPILE] (-- ; <string>)
; Compile the next immediate word into code diction ary.

 COLON IMEDD+9,"[COMPILE]"
BCOMP:
 CALL TICK
 RJMP CALLC

; COMPILE (--)
; Compile the next address in colon list to code di ctionary.

 COLON COMPO+7,"COMPILE"
COMPI:
 CALL RFROM
 CALL DUPP
 CALL AT
 CALL COMMA ;compile call instruction
 CALL CELLP
 CALL DUPP
 CALL AT
 CALL COMMA ;compile address
 CALL CELLP
 CALL TOR
 RET ;adjust return address

; LITERAL (w --)
; Compile tos to code dictionary as an integer lite ral.

 COLON 7,"LITERAL"
LITER:
 CALL DOLIT
 .DW DOLIT
 CALL CALLC
 RJMP COMMA

; $," (--)
; Compile a literal string up to next " .

; COLON 3,'$'
; .DB ',','"'
STRCQ:
 CALL DOLIT
 .DW '"'
 CALL WORDD ;move string to code dictionary

 122

 CALL DUPP
 CALL CAT
 CALL TWOSL
 CALL TOR
STRCQ1:
 CALL DUPP
 CALL AT
 CALL COMMA
 CALL CELLP
 CALL DONXT
 .DW STRCQ1
 JMP DROP

ALLOT Allocats n bytes of RAM memory on bottom of the free RAM space.
System variable DP points to the bottom of free RAM space.

IALLOT Allocate n bytes of flash memory on the top of the dictionary.
System variable CP points to the top of the dictionary.

, It is the most primitive compiler command. It compiles an integer w
to dictionary in the flash memory, and add the new item to the growing
command list of the current command under construction. This is the
primitive compiler upon which the FORTH compiler rests.

CALL, Compile or assemble a subroutine call instruction with the code field
address on the parameter stack as destination. Compound commands
are compiled as lists of subroutine calls.

[COMPILE] Compile the code field address of the next command in the input
stream. It is used to compile commands, which would otherwise be
executed while compiling.

COMPILE Compile the code field address of the next command in the input
stream. It forces compilation of a command at run time.

LITERAL Compile an integer literal. It first compiles a call doLIT machine
instruction, followed by an integer value from the parameter stack.
When doLIT is executed, it extracts the integer in the next program
word and pushes it on the parameter stack.

$," Compile a string literal. String text is taken from the input stream and
terminated by a double quote. A token (such as . "| or $"|) must
be compiled before the string to form a sting literal.

?UNIQUE Display a warning message to show that the name of a new command
is the same as a command already in the dictionary.

$,n Build a new header in the dictionary using the name string already
packed in the WORD buffer. Fill in the link field with the address in
LAST. The top of the dictionary is now the code field of a new
command, ready to accept commands and tokens.

$COMPILE Process a string at a, and compile a new token, a call instruction, in the
dictionary. This dictionary pointer in CP is incremented, and is ready to
compile the next token.

OVERT Link a new command to the dictionary and make it available for a
dictionary search. OVERT changes CONTEXT to point to the name field
of this new command, and extends the dictionary chain to include a
new command.

 123

; Terminate a compound command. Compile a ret instruction to
terminate a token list. Link this command to the dictionary, and change
the text interpreter to interpreting mode.

] Activate compiling mode by writing the address of $COMPILE into
system variable 'EVAL .

: Create a new compound command. Take the next input string to build a
new header. Now, its code field is on top of the command dictionary,
and is ready to accept new tokens.

5.5.5 Structure Commands

Immediate commands are not compiled as tokens by the compiler. Instead, they are
executed by the compiler immediately. They are used to build control structures in
compound commands. Immediate commands has its IMMEDIATE lexicon bit set,
in the length byte of the name field. The control structures used in 328eForth are the
following:

Conditional branch IF ... THEN
 IF ... ELSE ... THEN
Finite loop FOR ... NEXT
 FOR ... AFT ... THEN... NEXT
Infinite loop BEGIN ... AGAIN
Indefinite loop BEGIN ... UNTIL
 BEGIN ... WHILE ... REPEAT

A control structure contains one or more address literals with ?branch, branch and
next commands, which causes execution to branch out of the normal sequence. The
control structure commands are immediate commands which compile the address
literals and resolve the branch address.

One should note that BEGIN and THEN do not compile any token. They set up or
resolve control structures in compound commands. IF , ELSE, WHILE, UNTIL , and
AGAIN do compile address literals with branching tokens.

I use two characters a and A to denote some addresses on the data stack. a points to
a location to where a branch commands would jump to. A points to a location where
a new address will be stored when the address is resolved.

;; Structures

; BEGIN (-- a)
; Start an infinite or indefinite loop structure.

 COLON IMEDD+5,"BEGIN"
BEGIN:
 CALL CPP
 JMP AT

; FOR (-- a)
; Start a FOR-NEXT loop structure in a colon defini tion.

 124

 COLON IMEDD+3,"FOR"
FOR:
 CALL DOLIT
 .DW TOR
 CALL CALLC
 RJMP BEGIN

; NEXT (a --)
; Terminate a FOR-NEXT loop structure.

 COLON IMEDD+4,"NEXT"
NEXT:
 CALL DOLIT
 .DW DONXT
 CALL CALLC
 CALL TWOSL
 RJMP COMMA

; UNTIL (a --)
; Terminate a BEGIN-UNTIL indefinite loop structure .

 COLON IMEDD+5,"UNTIL"
UNTIL:
 CALL DOLIT
 .DW QBRAN
 CALL CALLC
 CALL TWOSL
 RJMP COMMA

; AGAIN (a --)
; Terminate a BEGIN-AGAIN infinite loop structure.

 COLON IMEDD+5,"AGAIN"
AGAIN:
 CALL DOLIT
 .DW BRAN
 CALL CALLC
 CALL TWOSL
 RJMP COMMA

BEGIN Start a loop structure. It pushes an address a on the parameter stack. a
points to the top of the dictionary where new tokens will be compiled. If
begins an infinite loop or an indefinite loop.

FOR Compile a >R token and pushes the address of the next token a on the
parameter stack. It starts a FOR-NEXT loop.

NEXT Compile a next token with a target address a on the top of the parameter
stack. It resolves a FOR NEXT loop.

UNTIL Compile a ?branch token with a target address a on the top of the
parameter stack. It resolves a BEGIN-UNTIL loop.

AGAIN Compile a branch token with a target address a on the top of the
parameter stack. It resolves a BEGIN-AGAIN loop.

 125

; IF (-- A)
; Begin a conditional branch structure.

 COLON IMEDD+2,"IF"
IFF:
 CALL DOLIT
 .DW QBRAN
 CALL CALLC
 CALL BEGIN
 CALL DOLIT
 .DW 2
 RJMP IALLOT

; AHEAD (-- A)
; Compile a forward branch instruction.

; COLON IMEDD+5,"AHEAD"
AHEAD:
 CALL DOLIT
 .DW BRAN
 CALL CALLC
 CALL BEGIN
 CALL DOLIT
 .DW 2
 JMP IALLOT

; REPEAT (A a --)
; Terminate a BEGIN-WHILE-REPEAT indefinite loop.

 COLON IMEDD+6,"REPEAT"
REPEA:
 CALL AGAIN
 CALL BEGIN
 CALL TWOSL
 CALL SWAPP
 JMP ISTOR

; THEN (A --)
; Terminate a conditional branch structure.

 COLON IMEDD+4,"THEN"
THENN:
 CALL BEGIN
 CALL TWOSL
 CALL SWAPP
 JMP ISTOR

; AFT (a -- a1 A)
; Jump to THEN in a FOR-AFT-THEN-NEXT loop the firs t time through.

 COLON IMEDD+3,"AFT"
AFT:
 CALL DROP
 CALL AHEAD
 CALL BEGIN
 JMP SWAPP

; ELSE (A -- A)

 126

; Start the false clause in an IF-ELSE-THEN structu re.

 COLON IMEDD+4,"ELSE"
ELSEE:
 CALL AHEAD
 CALL SWAPP
 JMP THENN

; WHILE (a -- A a)
; Conditional branch out of a BEGIN-WHILE-REPEAT lo op.

 COLON IMEDD+5,"WHILE"
WHILE:
 CALL IFF
 JMP SWAPP

IF Compile a ?branch address literal and pushes its address, a, is left on

the parameter stack. It starts a IF-ELSE-THEN or a IF-THEN branch
structure.

AHEAD Compile a branch address literal and pushes its address, a, is left on the
parameter stack. It starts a AHEAD-THEN branch structure.

REPEAT Compile a branch token with a target address a on the top of the
parameter stack. It resolves a BEGIN-WHILE-REPEAT loop.

THEN Resolve the address in a branch token whose address is a on the top of the
parameter stack. It resolves a IF-ELSE-TEHN or IF-THEN branch
structure.

AFT Compile a branch literal and leaves its address as A, It also replaces the
address a left by FOR with the address a1 of the next token. A will be
used by THEN to resolve the AFT-THEN branch structure, and a1 will be
used by NEXT to resolve the loop structure.

ELSE Compile a branch token, and use the address of the next token to resolve
the address field of ?branch token in a, as left by IF . It also replaces
a with A, the address of its address field for THEN to resolve. ELSE
starts the false clause in the IF-ELSE-THEN branch structure.

WHILE Compile a ?branch token and leave its address, A, on the stack.
Address a left by BEGIN is swapped to the top of the parameter stack.
WHILE is used to start the true clause in the BEGIN-WHILE-REPEAT
loop.

; ABORT" (-- ; <string>)
; Conditional abort with an error message.

 COLON IMEDD+6,"ABORT"
 .DB '"'
ABRTQ:
 CALL DOLIT
 .DW ABORQ
 CALL CALLC
 CALL STRCQ
 RET

 127

; $" (-- ; <string>)
; Compile an inline string literal.

 COLON IMEDD+2,'$'
 .DB '"'
STRQ:
 CALL DOLIT
 .DW STRQP
 CALL CALLC
 CALL STRCQ
 RET

; ." (-- ; <string>)
; Compile an inline string literal to be typed out at run time.

 COLON IMEDD+2,'.'
 .DB '"'
DOTQ:
 CALL DOLIT
 .DW DOTQP
 CALL CALLC
 CALL STRCQ
 RET

ABORT" Compile an error message as a string literal. This error message is

display at run time if the top item on the parameter stack is true , and the
rest of the tokens in this compound command are skipped and eForth
enters the interpreter loop in QUIT. This is the programmed response to
an error condition.

." Compile a string literal which will be printed when it is executed in run
time. This is the best way to present messages to you in an application.

$" Compile a string literal. When it is executed, only the address of the
string is pushed on the parameter stack. Later commands can use this
address to access the string and individual characters in the string as a
string array.

 5.5.6 Name Compiler

We had seen how tokens and structures are compiled into the code field of a
compound command in the dictionary. To build a new command, we have to build
its header first. A header consists of a link field and a name field. Here are the
commands to build the header.

;; Name compiler

; ?UNIQUE (a -- a)
; Display a warning message if the word already exi sts.

; COLON 7,"?UNIQUE"
UNIQU:

 128

 CALL DUPP
 CALL NAMEQ ;?name exists
 CALL QBRAN
 .DW UNIQ1
 CALL DOTQP ;redefinitions are OK
 .DB 7," reDef " ;but the user should be warned
 CALL OVER
 CALL COUNT
 CALL TYPES ;just in case its not planned
UNIQ1:
 JMP DROP

; $,n (na --)
; Build a new dictionary name using the string at n a.

; COLON 3,"$,n"
SNAME:
 CALL DUPP
 CALL CAT ;?null input
 CALL QBRAN
 .DW SNAM2
 CALL UNIQU ;?redefinition
 CALL LAST
 CALL AT
 CALL COMMA ;compile link
 CALL CPP
 CALL AT
 CALL LAST
 CALL STORE ;save new nfa in LAST
 CALL DUPP
 CALL CAT
 CALL TWOSL ;na count/2
 CALL TOR
SNAME1:
 CALL DUPP
 CALL AT
 CALL COMMA ;compile name
 CALL CELLP
 CALL DONXT
 .DW SNAME1
 JMP DROP
SNAM2:
 CALL STRQP
 .DB 5," name" ;null input
 JMP ERROR

?UNIQUE Display a warning message to show that the name of a new command
already exists in the dictionary. FORTH does not prevent your reusing
the same name for different commands. However, giving the same
name to many different commands often causes problems in software
projects. It is to be avoided if possible and ?UNIQUE reminds you of
it.

$,n Build a new header with a name string at RAM address na . It first

build a link field with an address pointing to the name field of the prior

 129

command, and then copies the string at na to build a name field. The
top of dictionary is the code field of the new command, and tokens can
be compiled.

5.5.7 FORTH Compiler

;; FORTH compiler

; $COMPILE (a --)
; Compile next word to code dictionary as a token o r literal.

; COLON 8,"$COMPILE"
SCOMP:
 CALL NAMEQ
 CALL QDUP ;?defined
 CALL QBRAN
 .DW SCOM2
 CALL IAT
 CALL DOLIT
 .DW IMEDD
 CALL ANDD ;?immediate
 CALL QBRAN
 .DW SCOM1
 JMP EXECU
SCOM1:
 CALL TWOSL
 JMP CALLC
SCOM2:
 CALL NUMBQ
 CALL QBRAN
 .DW SCOM3
 JMP LITER
SCOM3:
 JMP ERROR ;error

; OVERT (--)
; Link a new word into the current vocabulary.

; COLON 5,"OVERT"
OVERT:
 CALL LAST
 CALL AT
 CALL CNTXT
 JMP STORE

; ; (--)
; Terminate a colon definition.

 COLON IMEDD+COMPO+1,";"
SEMIS:
 CALL DOLIT
 .DW RETT
 CALL COMMA
 CALL LBRAC
 JMP OVERT

 130

$COMPILE Build the token list of a new compound command in its code field,
which is on the top of the dictionary. It takes a string address a on the
top of the parameter stack, search dictionary for a matching command,
and adds a token to the token list. If the string is not a valid
command, it is converted to a number, and a integer literal added to the
token list. If the string is not a number, abort the compilation process
and return to the text interpreter loop in QUIT. If the string is the
name of an immediate command, this command is not compiled, but
executed immediately. Immediate commands are tools used by the
compiler to build structures in compound commands.

OVERT Link a new command to the dictionary and thus makes it available for
dictionary searches. When a new header is build, its name field
address is stored in system variable LAST, and it is not yet linked to the
dictionary which starts at CONTEXT. OVERT copies the name field
address in LAST to CONTEXT and links the new command to the
dictionary. It is used to protect the dictionary so that new commands
not compiled successfully will not be compiled incorrectly into later
compound commands.

; Terminate a new compound command. It compiles an ret machine
instruction to terminate the new token list, links this new command to
the dictionary, and then returns to the text interpreter by storing the
code field address of $INTERPRET into system variable 'EVAL .

;] (--)
; Start compiling the words in the input stream.

 COLON 1,"]"
RBRAC:
 CALL DOLIT
 .DW SCOMP*2
 CALL TEVAL
 JMP STORE

; : (-- ; <string>)
; Start a new colon definition using next word as i ts name.

 COLON 1,":"
COLONN:
 CALL TOKEN
 CALL SNAME
 JMP RBRAC

; IMMEDIATE (--)
; Make the last compiled word an immediate word.

 COLON 9,"IMMEDIATE"
IMMED:
 CALL DOLIT
 .DW IMEDD
 CALL LAST
 CALL AT

 131

 CALL IAT
 CALL ORR
 CALL LAST
 CALL AT
 JMP ISTOR

] Turn the text interpreter to a compiler by storing the code field
address of $COMPILE into system variable 'EVAL ..

: Create a new header and start a new compound command. It takes
the following string in the input stream to be the name of the new
command. The dictionary is ready to accept a token list.] turns
the text interpreter into compiler, which will compile the following
text strings to build a new compound command. The new
compound command is terminated by ; .

IMMEDIATE Set the immediate lexicon bit in the name field of the new command.
When the compiler encounters a command with this bit set, it will not
compile this words into the token list under construction, but execute
it immediately. This bit allows structure commands to build special
structures in compound commands, and to deal with special
conditions when the compiler is running.

5.5.8 Defining Commands

Defining commands are molds which can be used to create classes of commands
which share the same run time execution behavior. In 328eForth, we have these
defining commands: : , CREATE, CONSTANT and VARIABLE.

;; Defining words

; CREATE (-- ; <string>)
; Compile a new array entry without allocating code space.

 COLON 6,"CREATE"
CREAT:
 CALL TOKEN
 CALL SNAME
 CALL OVERT
 CALL DOLIT
 .DW DOVAR
 CALL CALLC
 CALL DPP
 CALL AT
 JMP COMMA

; CONSTANT (n -- ; <string>)
; Compile a constant.

 COLON 8,"CONSTANT"
CONST:
 CALL TOKEN
 CALL SNAME
 CALL OVERT

 132

 CALL DOLIT
 .DW DOVAR
 CALL CALLC
 JMP COMMA

; VARIABLE (-- ; <string>)
; Compile a new variable uninitialized.

 COLON 8,"VARIABLE"
VARIA:
 CALL CREAT
 CALL DOLIT
 .DW 2
 JMP ALLOT

;== ==============

.EQU LASTN = _LINK*2 ;last name address in name dic tionary

.EQU DTOP = $140 ;next available memory in name dic tionary
.EQU CTOP = pc*2 ;next available memory in code dic tionary

;== =============

CREATE Create a new data array in RAM memory without allocating memory.
When commands created by CREATE is executed, they will push their
respective RAM addresses on the parameter stack. Memory space of
an actual array is allocated using ALLOT command.

VARIABE Create a new command with a doVAR token followed by a pointer to
RAM memory and allocate 2 bytes of space in RAM memory. When
a variable commands is executed, it pushes the RAM address on the
parameter stack.

CONSTANT Create a new command with a doVAR token followed by the constant
value. When a constant command is executed, it pushes the constant
value on the parameter stack.

6. Conclusions

What I give you in 328eForth is that in 5156 bytes, you have a programming language,
an interactive operating system, and all the debugging tools to develop applications on
Arduino Uno, for Arduino Uno. The complete source code of 328eForth.asm is only
54 Kbytes long, comparing to 232 MB hogged by Arduino 0022. It is an organic
system, which can grow to accommodate any application that ATmega328P
microcontroller can host. It allows you to read all its CPU and I/O registers, and all
its data and program memories. It also allows you to change the I/O registers and
memories, and to add new commands to the flash memory. By adding new

 133

commands, you can extend the 328eForth system and build a new system which will
do what you want it to do.

In 328eForth, I try to reduce the FORTH language to its bare minimum, so that you
can learn this programming language quickly, and to use it to do useful work.
ATmega328P, like all the newer microcontrollers available now, contains many
powerful and complicated I/O devices, and it takes the AVR Data Book 566 pages to
explain them. With 328eForth, you can examine all the I/O registers and modify
them to make the I/O devices work the way you want them to work. There is no
better way to study the AVR Data Book than to read the book along with 328eForth,
modifying the I/O registers and observe what the I/O devices do. 328eForth is a
worthy companion to the AVR Data Book.

Arduino Uno is an excellent platform for FORTH. FORTH allows you to develop
substantial applications quickly and produce high quality code. You write
commands in small modules which can be tested exhaustively. Fully tested
commands can be used to build more powerful commands at higher conceptual levels,
until the last command, which becomes the application. This last command can be
used to configure a turnkey system, so that it will be executed when the system boots
up. You can do all these things with 328eForth on Auduino Uno.

FORTH is a programming paradigm very different from conventional programming
languages and operating systems. It can be embedded into a small microcontroller,
and empowers you to make the best use of the limited resources available in a
microcontroller. I hope you will learn this paradigm and enjoy these benefits:
 Integrated operating system and programming language on a small chip
 Interactive command interpreter
 Incremental compilation of new commands
 Bottom up coding and debugging
 Naturally structured programming
 Ready access to memory and I/O registers
 Ease in building turnkey applications

In explaining how this system is constructed, every step in the way, I hope to lay to
rest these myths, that computers are complicate, programming languages are
complicated, and operating systems are complicated. All these things can be very
simple, and can be understood by ordinary people and ordinary engineers. If you
understand this 328eForth system completely, the understanding can be carried over
to any computer and microcontrollers.

People using computers are trained to be slaves. You are taught to push certain
buttons, and your are taught to push certain keys. Then, you get employed to push
buttons and keys to work as slaves. Computers, programming languages, and
operating systems are made complicated to enslave people.

Computers are not complicated beyond comprehension. Programming languages
and operating systems do not have to be complicated. If you get a sharp knife, you
can be the master of your destination. 328eForth is a sharp knife. Go use it.

 134

Appendix 328eForth Commands

Stack Comments:
Stack inputs and outputs are shown in the form: (input1 input2 ... -- output1 output2 ...)
Stack Abbreviations of Number Types
flag Boolean flag, either 0 or -1
char ASCII character or a byte
n 16 bit number
addr 16 bit address
d 32 bit number

Stack Manipulation Commands
?DUP (n -- n n | 0) Duplicate top of stack if it is not 0.
DUP (n1 -- n2) Duplicate top of stack.
DROP (n --) Discard top of stack.
SWAP (n1 n2 -- n2 n1) Exchange top two stack items.
OVER (n1 n2 -- n1 n2 n1) Make copy of second item on stack.
ROT (n1 n2 n3 -- n2 n3

n1)
Rotate third item to top.

PICK (n -- n1) Zero based, duplicate nth item to top. (e.g. 0 PICK is DUP).
>R (n --) Move top item to return stack for temporary storage.
R> (-- n) Retrieve top item from return stack.
R@ (-- n) Copy top of return stack onto stack.
2DUP (d -- d d) Duplicate double number on top of stack.
2DROP (d1 d2 --) Discard two double numbers on top of stack
DEPTH (-- n) Count number of items on stack.

Arithmetic Commands
+ (n1 n2 -- n3) Add n1 and n2.
- (n1 n2 -- n3) Subtract n2 from n1 (n1-n2=n3).
* (n1 n2 -- n3) Multiply. n3=n1*n2
/ (n1 n2 -- n3) Division, signed (n3= n1/n2).
1+ (n -- n+1) Increment n.
1- (n -- n-1) Decrement n.
2+ (n -- n+2) Add two to n.
2- (n -- n-2) Subtract two from n.
2* (n -- n*2) Logic left shift.
2/ (n -- n/2) Logic right shift.
UM+ (n1 n2 -- nd) Unsigned addition, double precision result.
UM* (n1 n2 -- nd) Unsigned multiply, double precision result.
M* (n n -- d) Signed multiply. Return double product.
UM/MOD (nd n1 -- mod quot) Unsigned division with double precision dividend.
M/MOD (d n -- mod quot) Signed floored divide of double by single. Return mod and

quotient.
MOD (n1 n2 -- mod) Modulus, signed (remainder of n1/n2).
/MOD (n1 n2 -- mod quot) Division with both remainder and quotient.
*/MOD (n1 n2 n3 -- n4 n5) Multiply and then divide (n1*n2/n3)
*/ (n1 n2 n3 -- n4) Like */MOD, but with quotient only.
ABS (n1 -- n2) If n1 is negative, n2 is its two's complement.
NEGATE (n1 -- n2) Two's complement.
MAX (n1 n2 -- n3) n3 is the larger of n1 and n2.
MIN (n1 n2 -- n3) n3 is the smaller of n1 and n2.
WITHIN (n1 n2 n3 -- flag) Return true if n1 is within range of n2 and n3. (n2 <= n1 < n3)
DNEGATE (d1 -- d2) Negate double number. Two's complement.
D+ (d1 d2 -- d3) Add double numbers.
D- (d1 d2 -- d3) Subtract double numbers.
D- (d1 d2 -- d3) Subtract double numbers.

 135

Logic and Comparison Commands
AND (n1 n2 -- n3) Logical bit-wise AND.
OR (n1 n2 -- n3) Logical bit-wise OR.
XOR (n1 n2 -- n3) Logical bit-wise exclusive OR.
INVERT (n1 -- n2) Bit-wise one's complement.
0< (n -- flag) True if n is negative.
U< (n1 n2 -- flag) True if n1 less than n2. Unsigned compare.
< (n1 n2 -- flag) True if n1 less than n2.
= (n1 n2 -- flag) True if n1 equals n2.
> (n1 n2 -- flag) True if n1 greater than n2.
D> (d1 d2 -- flag) True if d1 greater than d2.

RAM Memory Commands
@ (addr -- n) Replace addr by number at addr.
C@ (addr -- char) Fetch least-significant byte only.
! (n addr --) Store n at addr.
C! (char addr --) Store least-significant byte only.
+! (n addr --) Add n to number at addr.
COUNT (addr1 -- addr+1

char)
Move string count from memory onto stack.

ALLOT (n --) Add n bytes to the RAM pointer DP.
HERE (-- addr) Address of next available RAM memory location.
PAD (-- addr) Address of a scratch area of at least 64 bytes.
TIB (-- addr) Address of terminal input buffer.
CMOVE (addr1 addr2 n --) Move n bytes starting at memory addr1 to addr2.
FILL (addr n char --) Fill n bytes of memory at addr with char.

Flash Memory Commands
I@ (addr -- n) Replace addr by number at flash memory addr.
IC@ (addr -- char) Fetch a byte from flash memory addr.
I! (n addr --) Store n at flash memory addr.
ICOUNT (addr1 -- addr+1

char)
Move string count from flash memory onto stack.

IALLOT (n --) Add n bytes to the flash memory pointer CP.
ITYPE (addr n --) Display a string of n characters in flash starting at address addr.
READ (addr1 addr2 --) Read 128 bytes from flash memory addr1 to RAM memory

addr2.
WRITE (addr1 addr2 --) Write 128 bytes from RAM memory addr1 to flash memory

addr2.
ERASE (addr --) Erase an 128 byte page in flash memory at addr.
FLUSH (--) Write modified flash buffers back to flash memory.

System Variables
'BOOT (-- addr) Contain address of application command to boot.
BASE (-- addr) Contain radix for number conversion
TMP (-- addr) Temporary scratch pad
SPAN (-- addr) Contain actual number of characters received by EXPECT
>IN (-- addr) Contain character offset into the input stream buffer.
#TIB (-- addr) Contain current length of terminal input buffer (TIB).
'TIB (-- addr) Contain current address of terminal input buffer (TIB)
'EVAL (-- addr) Contain interpreter or compiler to evaluate a command.
HLD (-- addr) Contain pointer to numeric string under construction.
CONTEXT (-- addr) Contain name field address of last command in dictionary
CP (-- addr) Contain first free address in flash memory
DP (-- addr) Contain first free address in RAM memory
LAST (-- addr) Contain name field address of command under compilation

Terminal Input-Output Commands

 136

EMIT (char --) Display char.
KEY (-- char) Get an ASCII character from the keyboard.
?KEY (-- char -1 | 0) Return an ASCII character from the keyboard and a true flag.

Return false flag if no character available.
. (n --) Display number n with a trailing blank.
U. (n --) Display an unsigned integer with a trailing blank.
.R (n1 n2 --) Display signed number n1 right justified in n2 character field.
U.R (n1 n2 --) Display unsigned number n1 right justified in n2 character

field.
? (addr --) Display contents at memory addr.
<# (--) Start numeric output string conversion.
(n1 -- n2) Convert next digit of number and add to output string
#S (n --) Convert all significant digits in n to output string.
HOLD (char --) Add char to output string.
SIGN (n --) If n is negative, add a minus sign to the output string.
#> (xd -- addr n) Terminate numeric string, leaving addr and count for TYPE.
CR (--) Display a new line.
SPACE (--) Display a space.
SPACES (n --) Display n spaces.
EXPECT (addr n --) Accept n characters into buffer at addr.
CHAR (-- char) Parse next command and return its first character.
TYPE (addr n --) Display a string of n characters starting at address addr.
BL (-- 32) Return ASCII Blank character.
DECIMAL (--) Set number base to decimal.
HEX (--) Set number base to hexadecimal.

Compiler and Interpreter Commands
:<name> (--) Begin a colon definition of <name>.
; (--) Terminate execution of a colon definition.
CREATE
<name>

(--) Dictionary entry with no parameter field space reserved.

VARIABL
E <name>

(--) Defines a variable. At run-time, <name> leaves its address.

CONSTAN
T <name>

(n --) Defines a constant. At run-time, n is left on the stack.

, (n --) Compile n to the dictionary in flash memory
IMMEDIA
TE

(--) Cause last-defined command to execute even within a colon
definition.

COMPILE
<name>

(--) <name> is compiled to dictionary.

[COMPILE
] <name>

(--) Immediate command <name> is compiled to dictionary.

LITERAL (n --) Compile literal number n. At run-time, n is pushed on the stack.
[(--) Switch from compilation to interpretation.
] (--) Switch from interpretation to compilation.
WORD<tex
t>

(char -- addr) Get the char delimited string <text> from the input stream and
leave as a counted string at addr.

(comment) (--) Ignore comment text.
\ comment (--) Ignore comment till end of line.
." <text>" (--) Compile <text> message. At run-time display text message.
.(<text>) (--) Display <text> from the input stream.
$" <text>" (-- addr) Compile <text> message. At run-time return its address.
ABORT"
<text>"

(flag --) Compile <test> message. At run-time display message and
abort if flag is true. Otherwise, ignore message and continue.

COLD (--) Start eForth system.
QUIT (--) Return to interpret mode, clear data and return stacks.
QUERY (--) Accept input stream to terminal input buffer.
NAME> (addr1 -- addr2) Traverse name field at addr1 and return code field address

 137

addr2.
NUMBER? (addr -- n -1 | addr

0)
Convert a number string to integer. Push a flag on tos.

EXECUTE (addr --) Execute command definition at addr.
@EXECU
TE

(addr --) Execute command definition whose execution address is in
addr.

EXIT (--) Terminate execution of a colon definition.

Compiler Structure Commands
IF (flag --) If flag is zero, branches forward to ELSE or THEN.
ELSE (--) Branch forward to THEN.
THEN (--) Terminate a IF-ELSE-THEN structure.
FOR (n --) Setup loop with n as index. Repeat loop n+1 times.
NEXT (--) Decrement loop index by 1 and branch back to FOR. Terminate

FOR-NEXT loop when index is negative.
AFT (--) Branch forward to THEN in a loop to skip the first round
BEGIN (--) Start an indefinite loop.
AGAIN (--) Branch backward to BEGIN.
UNTIL (flag --) Branch backward to BEGIN if flag is false. If flag is true,

terminate BEGIN-UNTIL loop.
WHILE (flag --) If flag is false, branch forward to terminate

BEGIN-WHILE-REPEAT loop. If flag is true, continue
execution till REPEAT.

REPEAT (--) Resolve WHILE clause. Branch backward to BEGIN.

Utility Commands
' <name> (-- addr) Look up <name> in the dictionary. Return execution address.
WORDS (--) Display all eForth commands
DUMP (addr --) Dump 128 bytes of RAM memory starting from addr.
IDUMP (addr --) Dump 128 bytes of flash memory starting from addr.
.S (--) Dump the parameter stack.

