Tao of Arduino

Chapter 1. eForth for Arduino
1.1 Arduino asaFirmware Development Platform

All these years, | have been looking for microcolér platforms on which | can
teach people how to program in the FORTH languagdelesigned a training course |
called Firmware Engineering Workshop. | couldriran open minded engineer to
program in FORTH in about a week, with a reasonelpable platform, i.e., a
microcontroller evaluation board with a FORTH opierg system loaded. Good
platforms are expansive, and low cost platformsraadequate. What | did was to
grab any microcontroller board at hand and usedlitdid not work well because
what | taught could not be easily replicated bygle@t home. People got frustrated
when they could not reproduce results | demonstratdhen, | found Arduino Uno
Board.

The microcontroller evaluation board | need musieha microcontroller with
reasonable capabilities. An 8-bit microcontroléth a fast clock is adequate.
16-bit of 32-bit microcontrollers are of course ruetter. The board must have at
least 8 KB of ROM memory and 1 KB of RAM memory.t must also have a
USART port to communicate with a terminal emulaiora host PC. Any other 1/O
devices will be icings on the cake. The more tbigeb.

Arduino Uno has all the components | listed abowvieis also inexpensive, costing
only $29. It uses ATmega328P, a very interestimgacontroller which has 32 KB
of flash memory, enough to host a FORTH operatysgesn, 2 KB of RAM and many
I/O devices to build substantial applications. b Uno also has a USB port
which connects a PC and an USART device in ATme8B32 This serial interface is
necessary for a FORTH system so that you can rdmpeogram ATmega328P
interactively from a terminal emulator on the PC.

Arduino Uno is a lovely machine. You connect rioilgh a USB cable to your PC,
and you can program it to do many interesting thingits microcontroller
ATmega328P, running at 16 MHz, is very capableuohing many interesting
applications.

The template of a sketch, which is the softwar@ruino 0022, captures the essence
of firmware programming in casting user applicasiamtwo statements: setup() and
loop(). It eliminates all the syntactic statemeawriguired by a normal C program and
exposes to you only the core of an application.

However, Arduino software insulates you from thieicate nature of ATmega328P
microcontroller, its instruction set, and its I/@vites. Instead, you are given a
library of useful routines which are used to b@fgplications. The insulation
initially helps you to program the microcontroliara C-like high level programming
language. However, being an 8 bit microcontro#dimega328P in C language will
run out of gas when application demands performangé¢ this point, you will have

to get down to the bare metal to push ATmega3288 tonit. Then, you have to
learn its instruction set and all its I/O devicasd perhaps program it in assembly
language.

The best alternative approach is to program ATm28R83n the FORTH language.
FORTH exposes ATmega328P to you. You can intefggtiexamine its RAM
memory, its flash memory, and all the I/O deviaas®unding the CPU. You can
incrementally add small pieces of code, and teshtexhaustively. An interactive
programming and debugging environment greatly acatds program development,
and ensures the quality of the program.

Since 1990, | have been promoting a simple FORTguage model called eForth.
This model consists of a kernel of 30 primitive FBRcommands which have to be
implemented in machine instructions of a host naordroller, and 190 compound
FORTH commands constructed from the primitive comasaand other compound
commands. By isolating machine dependent commi@onsmachine independent
commands, the eForth model can be easily portathty different microcontrollers.
This model is ported to ATmega328P, and the resulte 328eForth system, which
runs very nicely on Arduino Uno Board.

328eForth is optimized for performance. The nundbgrimitive commands is
increased to 68. Commands which are used to theldperating system but rarely
used by you are hidden so that you are not ovemaxhith unused commands.
Only 151 commands are exposed to you. The sooae is written in AVR
assembly. The code is provided so that you canfgnibdo suite your application.
The entire system takes up only 5,156 bytes oflést memory. leaving lots of room
for your application.

Unfortunately, 328eForth can not co-exit with Amlwi0022. The hardware reason
is that 328eForth allows you to add new FORTH comuisan the application flash
memory section in ATmega328P, and the commandshwhiite application section
must reside in the bootloader flash memory sectidiimega328P. 328eForth must
occupy the bootloader section. We must over-whieeArduino program loader in the
bootloader section. The software reason is th&eBarth is an independent
programming language and operating system, arahitat call library routines in the
library of Arduino 0022.

If 328eForth cannot co-exit with the Arduino0022yywdoes anybody want to use it
on Arduino Uno?

The best answer | can give you is that 328eForémspip ATmega328P so you can
see what is going on inside ATmega328P, and thatgo program and debug it
incrementally, and interactively.

The best example is blinking the on-board LED catexdto D13 digital 1O line.
This is what the BLINK.pde demonstration programrduino 0022 does. When
328eForth is up and running, type the following HBIReommands to turn the D13
LED on and off:

20 24 C! \ make D13 an output pin

20 25 C! \ turn D13 LED on
0 25 CI! \ turn D13 LED off

You will find the complete explanation on the ab@eenmands in Section 9.2.

Needless to say, the heart of an Arduino BoardasATmega328P microcontroller.
If you like to fully understand Arduino and make thest use of it, eventually you
have to deal with ATmega328P directly. You wilveao come back and read the
AVR Data Book of Atmega328P, DOC8271.pdf, from Atr@erp on "8-bit AVR
Microcontroller with 4/8/16/ Bytes In-Programmalblash”, which is a huge 566
page document. It is a dry technical documentfarotasual reading. Actually, it
is not that bad. Only when you have to drive ohihe devices, like the I/O devices,
the lock bits, the fuse bytes, etc., in ATmega32¥6u open the respective chapter
and learn all about this device, line by line, wbgkword. If you have 328eForth
running, you can examine the associated registacsall the bits in these registers
will gradually make sense. Change these bitsantafely, and observe the effects.
There is no better way to learn these devicest@niake them work the way you
want them to work. And, 328eForth is your besrfd to do that.

1.2 What isFORTH?

FORTH was invented by Chuck Moore in the 1960s piogramming language.
Chuck was not impressed by programming languagesating systems, and
computer hardware of that time. He sought the Est@nd most efficient way to
control his computers. He used FORTH to prograeryeeomputer in his sight.
And then, he found that he could design better aderp, because FORTH is much
more than just a programming language; it is arelewt computer architecture.

So what is FORTH really?

Many books and many papers had been written abORITH. However, FORTH is
still elusive because it has many features andacheristics which are difficult to
describe. Now that it has moved from softwaredalivare, with technologies like
FPGA and custom IC, it is even more difficult tcaately put it into words. Here |
will try to look at it from a completely differemingle.

FORTH is a list processor. It is very similar ttSP in spirit, but totally different in
form. Both languages assume that all computalabl@ms can be expressed and
solved in nested lists.

FORTH has a set of commands, and an interprefaotess lists of commands.
FORTH commands are records stored in a memorycaitksl a dictionary.

Arecord of a FORTH command has three fields: kfield linking commands to

form a searchable list, a name field containingrthme of this command as an ASCII
string which can be searched, and a code fieldaauing executable code and data to
perform a specific function for this command. kyrhave an optional parameter
field, which contains additional data needed bg timmand. The link field and

name field allow the interpreter to look up a comohan the dictionary, and the code
field provides executable code to perform the fiomcassigned to this command.

A FORTH command has two representations: an eXtegpeesentation in the form of
a text string with ASCII characters; and an intérearesentation in the form of a
token, which invokes executable code stored indedeld. In many FORTH
systems, the tokens are addresses. However, tokartake other forms depending
on implementation. For example, Java, which ia@ant of FORTH, uses byte
tokens.

There are two types of FORTH commands: primitiveRFEl commands having
machine code in their code fields, and compound B®OBommands having token
lists in their code fields.

The FORTH interpreter processes lists of commamdsxt strings. A list of

FORTH commands contains a sequence of stringssemiag FORTH commands,
separated by white spaces and terminated by agarreturn. The interpreter parses
out commands in the text strings into tokens aretetes code represented by these
tokens. When the FORTH interpreter encountersnaifore command, it executes
the machine code in its code field. When it entersna compound command, it
processes the token list in its code field. Hoprdcesses the token list depends
upon how tokens are defined and implemented.

The text interpreter operates in two modes: ingtipg mode and compiling mode.
In the interpreting mode, a list of command narnsasterpreted; i.e., commands are
parsed and executed. In the compiling mode, afisommand names is compiled;
i.e., commands are parsed and corresponding t@ersompiled into a token list.
This token list is given a name to form a new coombcommand, adding a new
command record in the dictionary.

New compound commands are compiled to representaieam lists. This is the
most powerful feature of FORTH, in that you can pdennew compound commands,
which replace lists of existing commands, both ftiia and compound. The syntax
to compile a new compound command is:

: <name> <list of existing commands> ;

Nested token lists are added as new compound codsmantil the final compound
command becomes the solution of your problem. slaseé compiled and tested from
the bottom up. The solution space can be explrddr and farther, and an
optimized solution can be found more quickly.

Linear, sequential token lists are enhanced byrabsitructures like branch structures
and loop structures. A structure is a token histde which the execution sequence
can be modified dynamically. The following figulskows a sequential structure, a

branch structure and a loop structure.

-’ | e e [T

h 4 h J
M \j \j
Sequential Shuctwre Branch Structure Loop Structure

A structure has only one entry point and one egiihfp although it may have many
branches inside. Structures can be nested, bunhotayverlap with one another. A
structure can therefore be considered an enhanked.t A compound command is
a structure given a name.

Using the concept of structures, a new compoundamad has the following syntax:
: <name> <list of structures> ;

The fundamental reason why FORTH lists (commartd #iad token lists) can be
simple, linear sequences of commands is that FO&SES two stacks: a return stack
to stored nested return addresses, and a parastetkrto pass parameters among
nested commands. Parameters are passed impdicitlye parameter stack, and do
not have to be explicitly invoked. Therefore, FGRGommands can be interpreted
in a linear sequence, and tokens can be storemhpies linear token lists. Language
syntax is greatly simplified, internal represeratof code is greatly simplified, and
execution speed is greatly increased.

A FORTH Virtual Machine thus needs two stacks,cefiit means to traverse nested
token lists, and a CPU within a reasonable instwactet and memory device to
support a small number of primitive commands. #Fi@rsuch an implementation
which has been ported to many commercial microgsme and microcontrollers.
Auduino Uno with an ATmega328P microcontrollerarsideal platform for an eForth
implementation, 328eForth system.

1.3 FORTH for Firmware Development

To use FORTH to develop applications for ATmega32&R Arduino Uno, you have
to have the following components:

First, you need a $29 Arduino Uno Board with an USBle connecting to PC.
Second, you also need a $34 AVRISP mkll In-Systeog2mmer from Atmel to
upload FORTH operating system to ATmega328P, amodnéigure ATmega328P.

The following picture shows my FORTH firmware dey@hent system: an Arduino
Uno, an AVRISP mkll programmer, and a PC. Two W3aBles connect Arduino
Uno Boad and AVRISPmKIlI programmer to PC. Theltotst besides the PC is
$63.

Third, on the PC, you need AVR Studio 4, an Integtdevelopment Environment
(IDE) from Atmel Corp to assemble 328eForth. Yam download it for free from
www.atmel.com.

To upload FORTH into ATmega328P, you need AVRISH mkich can write the
flash memory, both the bootloader section and ppdication, in ATmega328P
directly. There are a number of other programméngh can do it also.
However, the best and the most reliable one igHRISP mkll from Atmel Corp.
Of course, Atmel makes ATmega328P, and it madeyeaféort to provide the best
tool so that more people will use more of its chips

Atmel also provides AVR Studio 4, an Integrated &lepment Environment (IDE) to

6

assemble and compile source code written for Ati3288, and other 8 bit
microcontrollers it manufactures. It is free, lgat have to register with Atmel
before downloading it to your PC.

AVR Studio 4 contains an AVR assembler, C and Cempgilers, simulators, and
debuggers. It also uploads assembled or compiggtiocode to ATmega328P
through AVRISP mkll programmer. | only use the AdBsembler to assemble the
source code of 328eForth, and then use AVRISP tmklpload 328eForth object code
to ATmega328P. Once 328eForth is uploaded to AEB28P, all programming and
debugging operations are performed from a termanailator on PC, through the
USB cable connected to Arduino Uno.

On the PC, | use HyperTerminal to communicate witiuino Uno. HyperTerminal
comes with Windows, and can be accessed through\¥gt
Programs\Accessories\Communication\HyperTermin&tarting at Windows 7,
Microsoft stopped bundling HyperTerminal with Wivde However, you can still
download HyperTerminal application from MSDN websithe USB/COM driver
enabling HyperTerminal to talk through the USB gorArduino is located in the
folder of C:\ arduino 0022\\drivers\FTDI drivers\To load this driver, you need to
download the Arduino 0022 system from www.arduino.c

There are other terminal emulators for PC to comoation with Arduino.
RealTerm can be downloaded from SourceForge (/l&atterm.sourceforge.net/).
It has many more options than HyperTerminal, baythwork similarly.

You have to set up communication protocols on Hypeninal or RealTerm so that
they will communication with Arduino. The set ugrameters are 19,200 baud, 1
start bit, 8 data bits, no parity, 1 stop bit, aadflow control.

Apart from the flash memory, ATmega328P also haat\sitalled lock bits and fuse
bytes, which are used to configure the chip to belproperly according to your
requirements. The lock bits protect sectionsadhlmemory from inadvertent
reading and writing operations. The fuse bytedigare CPU, memory, and I/O
devices and select modes of operations for thesg@aoents. Lock bits and fuse
bytes can be read and written under AVR Studiosfesy through AVRISP mKil
programmer. These bits and bytes are configurepepty for the ATmega328P chip
on Arduino Uno and you do not have to worry abbem. However, you may have
to set these bits and bytes when you want to chtémegeonfiguration of ATmega328P
to do exactly what you what it to do, under comti required by specific
applications.

To develop programs for embedded systems, the atiomal methodology is to write
source code in C or in assembly. The source dempiled or assembled.
Object code is linked by a linker to produce exerutode, which is uploaded to the
target system. Now, you cross your fingers and tur power. Most likely, the
system does not work, and you enter into the debhggthase of development.

To debug a program in an embedded system, youlotedf sophisticated tools, like
simulator, in-circuit emulator (ICE), an oscillogeg and a good logic analyzer. You
set up break points, and trace the microcontrollgructions cycle by cycle. Itis

very difficult when the application program is largnd complicated, especially when
you can only observe the microcontroller from tisale.

The Arduino 0022 development environment strearalthe programming process.
You write your code in a sketch. You press the giterbutton to compile the sketch.
Then, you cross your fingers and press the uplogtd. If it works, great for you.

If it does not work, you are stuck. Arduino 0022lfty cannot give you much help.

If you do not have those sophisticated debugginstomentioned above, all you can
do is go back to the source code, read it overoaed again, and try to locate the bugs.
Believe me. Debugging a large program without prdpols is not an easy job, on
Arduino, or on any other microcontroller.

FORTH provides you the proper tools. You embeddii@ugging tools inside the
microcontroller in the form of an interactive FORDiderating system. Source code
in the form of many small commands is compiledhsy target microcontroller in the
embedded system. You can control the microcoetr@lbm within, and observe its
behavior from inside out. Break points are notessary, because FORTH
commands naturally break at their ends, and yowgoany their results interactively.
New commands are compiled, tested, and debuggeshneatally. The solution
space can be explored quickly, and almost exhaalgtiv Reliable system can thus be
built quickly. FORTH commands are lists of nedist$, and are very compact.
Substantial applications can be stored in very kmeimory area.

1.4 ArduinoTao Board

Arduino Boards were designed to be expandable. fdiresockets for I/O pins on
board can take different daughter boards, or shielthich contain additional circuitry
for various applications. The popularity of Ardaihoards is in no small part due to
the rich assortments of Arduino shields extendimgjiaations of Arduino boards to
many different fields.

| am exploring Arduino boards in the opposite di@t = What can | eliminate from
Arduino Uno to build boards for custom application?

It is interesting that ATmega328P is housed in @i28IP package which can be
removed and inserted into other DIP sockets. Nalays, most microcontrollers are
packaged in narrow pin surface mount packages niengossible to solder and
unsolder. ATmega328P in a DIP package is very fuserdly, and encourages
hobbyists and students to use it in their projects.

The output pins on ATmega328P can each sourcabugi to 40 mA of current, and
they can be used to drive LED's directly. | fodhdt a LED can be driven safely
without a current limiting resistor. It is theredovery convenient to attach LED's
directly to ATmega328P, although most experts adthat you should use current
limiting resistors.

You can turn on a pull-up resistor when an I/Oipinonfigured for input. The
resistance is 20-5Q’k depending on the power supply voltage. It isdfare very
convenient to attach input sensors directly to inpus and use ATmega328P to drive
the sensors, if they do not required large current.

Another interesting characteristic of ATmega328that its operating power supply
voltage ranges from 1.8 V to 5.5V, and its noropérating current is about 4 mA.

It is therefore very convenient to drive this mimpatroller with 2 AA batteries.

Most AA batteries discarded from toys still haveslof charge to drive ATmega328P.
These "exhausted" batteries still measure 1.4 .volthad used a pair of AA batteries
to power a application with ATmega328P, and hacenetianged the batteries for 4
months. The following picture shows that a baren&f§a328P chip sitting on a
prototyping board driving an application with 2 Aatteries. The big black chip
below ATmega328P is a TSOP32136, an infrared recéor infrared

communication.

Here is another application where ATmega328P chipaunted on a custom
development board.

Arduino Uno has a 16 MHz crystal to drive the masgeillator in ATmega328P.
ATmega328P can be configured to use many diffeysallators. The one | am
particularly interested is its 8 MHz internal okatibr. If you configure ATmega328P
to run on the internal oscillator, you do not h&aveise an external crystal or resonator,
and you gain two more pins for I/O operations. Triternal oscillator is quite
satisfactory for applications which do not requirecise timing, and most casual
application falls into this category.

The RESET pin (Pin 1) on ATmega328P has an intgralddup resistor. Therefore,
you really do not need an external pull-up resisidhe RESET pin. If you have a
power switch on your application board, it serweey well as a reset switch. If you
use the power switch to reset ATmega328P, you oafigure the chip so that you can
use the RESET pin for 1/O.

If you remove all the external components whichravenecessary for the operation
of ATmega328P, all you have to supply is power graind, as shown in the
following picture. The bare minimal connections:ains 7, 20 and 21 to Vcc
power, and Pins 8 and 22 to ground. You don't énem to have a 0.1 uF bypass
capacitor between power and ground. This configurauns very reliably over
long period of time. This is what | call Tao ofduino, as shown in the following
picture:

10

An application is built using the above Arduino T&oard, as shown in the following
picture:

You can remove an ATmega328P from its socket omii@Uno, and plug it in you
own board. Connect the RX (D0) and TX (D1) pindro to Pins 2 and 3 of
ATmega328P on your own board. Power up your baati328eForth on
ATmega328P will communicate with the terminal ifdee on PC through Arduino
Uno (without its ATmega328P) and its USB cable. e Ttilowing picture shows that
you can control an ATmega328P on a target boaaigtr the communication pins on
Arduino Uno from which the ATmega328P chip is remadv

;— RST AS
—1 Do Ad
—4L D1 A3

= D2 A2

= D3 Al

AE 2 D4 AD
- Veeo GND
rﬁ— GND Aref
1 _1|;L NTALL AVec
T XTAL? D13
T D& D12
== 1 Dg D11
—hL D7 D10
42 1 psg Do
ATmega328P

12

As Loa Tzi said in Tao Te Ching:

For knowledge, add a little everyday.
For Tao (wisdom), delete a little everyday.
Delete and delete, until nothing is left.
With nothing, you can do everything.
--Lao Tzi, Tao Te Ching, Chapter 48

When you can make the ATmega328P microcontrollerdik without the Arduino
Uno Board, you have learnt everything about ATm@g&3 and there is no problem
you cannot solve, within the capability of ATmeg8B2 This is the Tao of Arduino.

13

Chapter 2. 328eForth for Arduino Uno
2.1 Introduction

For a very long time, firmware engineering mearpriogram a UV Erasable PROM
chip and to insert it on a board which containedierocontroller, some RAM
memory chips, and some 1/O chips, and a sockéhtolJV EPROM. Then flash
memory chips replace UV EPROM's. And then evenghs integrated into a single
microcontroller chip, and we now have ISP, In Sysierogramming, which allows
you to program the microcontroller in its own sdckeArduino Uno integrates an
ATmega328P microcontroller with all necessary haniwcomponents on a small
printed circuit board, and captures the fancy néa generation of will-be firmware
engineers and DIY hobbyists.

| admire the efforts Arduino developers put intis thpen hardware system, especially
the simplification of the C programming languagéehese two statements:

setup();

loop();
These are the essence of firmware engineering. oflyedeficiency is the lack of
interactivity between you and your microcontroléip on the Arduino board. This is
where FORTH can be of great help.

There is a very good FORTH system AmForth for AnduUno. You can download
it from Source Forgéttp://sourceforge.net/projects/amforth/

It follows the ANS FORTH Standard, but it has a fewblems and does not behave
exactly like the prevailing public domain FORTH t&yss, such as figFORTH, F83,
FPC, and Win32FORTH. Itis a fairly complicatedplementation, involving
hundreds of files in many different folders. ATrna8g@8P is a lowly microcontroller,
and does not deserve such a large supporting systprogram it. After 20 years of
implementing eForth on many different microconeadl | am certainly of the opinion
that eForth is the FORTH best suited for this ngordgroller. Nevertheless,
AmForth is a good working FORTH system for ATmeg@B2 | studied it diligently
and enjoyed reading its code.

The original eForth was implemented in Direct Tlor&odel by myself and Bill
Muench. Dr. Richard Haskell implemented the f8abroutine Thread Model in
86se4th.asm for 8086 and 68000. | took his file modified it so it could be
assembled by the AVR assembler in AVR Studio 4 bgpreent system from Atmel.
AmForth implemented many FORTH commands in AVR adsg and these code
were ported into my implementation. | call it 3Z8eth because it is configured
specifically for ATmega328P, used on Arduino Uno.

The most important differences between 328eFornthAanForth are the following:

1. Subroutine Thread Model instead of the Direae@ld Model in AmForth.

2. Using byte addresses to access flash memorghwiais native 16-bit cells.
3. All assembly code are in a single file, not srad in hundreds of little files.
4. Flash programming is optimized through two 12&Ipage buffers.

5. No interrupts and no multitasking.

6. EEPROM memory is not used.

14

7. Interpreter is in NRWW memory. Compiler andruseension are in RWW
memory.
8. Ease in building turnkey applications

These differences make 328eForth much simpleretsuse, to understand and to
modify.

2.2 Installing Tools

Here are the steps you can follow to get everythimging.

Get an Arduino Uno board from Jameco for about $29.

Get the Atmel AVR ISP mkll programmer from Mouder, about $34.

Download the AVR Studio 4 from Atmel web site:
http://www.atmel.com/dyn/products/tools card.asplta=2725

Install AVR Studio 4. Do not connect the AVR ISRIhuntil the software
installation is complete.

Studio 4 will install its driver, Jungo USB, fosiAVR ISP mkll. The USB cable
must not be connected until After the install imdo

Download the Arduino 0022 packagehéip://www.arduino.cc/en/Main/Software
Unzip and install. This should load the USB to C®ishulator from FTDI. The
drivers are in that package at \Arduino-0022\dsVer DI drivers\.

To check on these USB drivers, go to
Start\Control-Panel\System\Hardware\Device-Manager you will see Jungo\AVR
ISP mkll. Under Ports (Com & LPT), you will seeddino Uno (COM X).
Remember the COM port number X for use with Hyparieal or RealTerm.

Download and install RealTerm from SourceForge:Htealterm.sourceforge.net/).
HyperTerminal is standard in Windows under Startessories\Communication\, and
it works similarly.

Connect the AVR ISP mkll ribbon cable to the sir [P header on Arduino Uno.
Red wire is #1 matching a tiny dot below the heaaeshown in the picture below

Connect a USB cable to the AVR ISP mkill to the catep Connect a USB cable

from Arduino Uno to the computer. The AVR ISP MEbesn’t power the target so
the Arduino USP is its power source. Check theakeonnections as noted above.

15

With the cables connected, you should be ablevoki® arduino.exe in the Arduino
0022 folder, and do all the wonderful things wittdAino sketches.

You should also be able to invoke AVR Studio 4 agdut its features. | will use
the AVR assembler in Studio 4 to assemble the 3@a@kBystem, and then use AVR
ISP mkKll cable to upload 328eForth.hex to ATmeg&3a@8 Arduino Uno.

2.3 Assembling 328eForth

Start Atmel AVR Tools \AVR Studio 4\. In the pop-window, select New Project.
If you have used Studio 4 for other projects, yan select Project Wizard in the
Project pull-down menu

In the Welcome to AVR Studio 4 Window, go to Projégpe panel and select Atmel
AVR Assembler. Enter a project name, like my_dfon the Project Name panel,
The same name will appear in the Initial File panéfou can change this file name
to the one you like.

A default path is shown in the Location panel. Yam change this path by clicking
the box to the right of Location panel, and thewigete to the folder you want.

Click the Next>> button and you are lead to a DgaudPlatform and Device
selection window. In the Debugger Platform paselect AVR Assembler 2. In the
Device Panel, select ATmega328P. Click Finishdyu#nd the Studio 4 Window
shows you the new project, with an empty .asmdilthe name (my_eforth) you
chose above. You are ready to go to work.

Copy the entire contents of 328eForth.asm intolitask file my_eforth.asm.

16

.= AVR Studio - [C:\amforth-4. 2Y\amforth-4.2132Beeforth\my_eforth.asm]

File Project Build Edit W¥iew Tools Debug wWindow Help - B X

NEHS 0 LRGSR e RS EE EY B

'ETrace Disabled [o R [P o B n
5 TITLE AtmezadZ8 eForth f

.naolist
Linclude “m328Pdef. inc”

3 my_efarth.asm st

B Induded Files
B4 Labels . &PeForth v2.20, Chen-Hanson Ting, July 20711

[E7] _ﬂ Cukput H Fix error, quit, 2/ and Tstack

-4 Object File 3

328eForth «2.10, Chen-Hanson Ting., March 2011
fdapted from

#Bzedth.azm by Richard Haskel |

fmforth by Matthias Trute
tesembled with AYRE Studio 4 from Atmel
-subrout ine threaded mode|
-Uniform byte addressing for flash, RAM and rezisters
-Ping-ponz block buffers for optimal flash programming
-FORTH interpreter & tools are in MRWW flash
-FORTH compiler & user extension are in RM flash
=No interrupt, no muoltitasking
-turnkey capability
-Case insenzitive
-9600 baud, 1 start, 8 data, no parity, 1 stop bit
#MS FORTH compatible. but not compliant.

Subrout ine threaded eForth; Yersion. 1.0, 1831
by Richard E. Haskel |

Dept. of Computer Science and Enginesring
Oakland University

Rochester, Michizan 48308

; eForth 1.0 by Bill Muench and C. H. Timg. 1330 o
F Mok o~ ka Freada is Aariuoea, from tha Al lamine canivrcans —
(L >
C:vamforth-4.2% amforth-4.2%328eeforth,my_eforth.asm 400k
ATmegaszar : b @ Ln1it,cols0

Pull down the Project Menu and select Assemblerddpt and check the Create List
File box. This way the assembler will producestirig file for my_eforth, if you

care to look at the assembled code. It is alwaesto see actual code the assembler
produces.

Now is the time for the big show. Pull down Bunietnu and select the Build button.
Studio 4 starts assembling my_eforth.asm, andalysgdbts of messages in the Build
panel at the bottom of the big window. Its finatssage is: "Assembly complete.

0 errors. 84 warnings"” The assembler does netdi8eForth commands with
names of even number of bytes, because it hagpendextra null bytes to the cell
boundaries. There are 84 of these commands. sdtraports that the assembled
system has 3560 bytes of code, 1596 bytes of daththe total byte count is 5156.

Cihvamforth-4. &\amforth-4. 2\326eeforth\ny_eforth.asmil42): warning: .cseg .db mnisalignment - padding zero byte A
Cihvamforth-4. 2Vamforth-4. 2\328eeforthmy_eforth.asm(3409): info: macro 'COLON' called here

C:ihvamforth-4. 2\anforth-4. 2\328eeforthiny_eforth.asm(l42): warning: .cseg .db misaligmment - padding zero byte
Cihvamforth-4. 2\vamforth-4. 2\328eeforthmy_eforth.asm(3422): info: macro 'COLON' called here

Cihvamforth-4. &\vamforth-4. 2%328eeforth\ny_eforth.asm(3443): No EEPROM data, deleting C:hamforth-4.2\amforth-4.2)3Z5eefc

ATmega328P memory use summary [bytes]:
Segment Begin End Code Data Used Size Usel

[.cseg] O0x000000 Ox007E£8G6 3572 1612 51564 32768 15.8%

[.dseqg] 0x000100 O0x000100 1} o o 2048 0.0%

[.eseqg] Ox000000 Ox000000 1} o o 1024 0.0%

Azszembly complete, 0 errors. 55 warnings 7
kS >

Sleuid | @ Message —Tﬂ Find in Files

Before you upload my_eforth to the Arduino Uno tiesting, it is an educational
experience to simulate my_eforth with the AVR siatat. Pull down Debug menu
and select Start Debugging option. The simulatons you a bewildering set of

17

windows and panels, displaying information on CRYisters, program memory, data
memory, and /O registers. Focus on the Editoepsinowing the assembly file. A
yellow arrow is pointing to the beginning of exaoantcode at memory location 0O,
with the instruction JMP ORIG.

Press F11 to single step through a few lines of-sfacode. That's all | can tell you
about the AVR simulator. If you want to change &28rth.asm, this is the best and
only tool you will need to debug it.

Pull down Debug menu and select Stop Debuggingopti You will be back to AVR
Studio 4.

In the second row of icons you can see two icoasltok like integrated circuits.
Click on the left one labeled CON, and the Conmmecbialog window appears.
Check AVRISP mkll on the left and USB on the righThen click Connect. You
will then be taken to the AVRISP window. If nolic& on the bug icon to the right
labeled AVR.

On the AVRISP window, select Main page. In the iDevand Signature Bytes panel,
pick ATmega328P in the Device box. In the Programgnand Target Settings panel,
you will see that the ISP Frequency is set to 1 MHZlick the Erase Device and
Read Signature buttons to verify that you can ettasehip and read its signature
bytes. If AVRISP failed to erase ATmega328P odréwee signature bytes, click the
Settings button, and lower the ISP frequency tdabty 125 kHz.

AVRISP mkll in ISP mode with ATmega328P 8{=1].3)

Main | Program | Fuses | LockBits | ddvanced | Hw Settings | Hw Info | Auto

Fuse Walug

LE Mo memon lock features enabled -
BLBO Mo lock on 5P and LPM in Application Section
ELB1 No lock on 5Pk and LPM in Boot Section -

4

LOCKERIT (OxFF

Auto read
Smart warnings
Werify after programming Program] [Verify] [Fead

Lockbits not read 7 cjeqy lockbits, uze Erase Device on Main tab

Setting mode and device parameters.. OK!
Entering pragramming maode.. OK!
Reading lockbits . 0«FF OK!

Leaving pragramming mode.. 0K

Select the Lock Bits page. ATmega328P also has'swalled lock bits and fuse
bytes, which are used to configure the chip to belmoperly according to your
requirements. The lock bits protect sectionsasdtilmemory from inadvertent
reading and writing operations. Select OXFF ferlttk bits to allow writing to the
flash memory. Click Program button to programltok bits.

Select the Fuses page. The fuse bytes configute @Emory, and 1/0 devices and

18

select modes of operations for these componentslect)xFD for the Extended
Fuse byte, O0xD8 for the High Fuse byte, and OxFFRHe Low Fuse byte. Click
Program button to program the fuse bytes.

AVRISP mkll in ISP mode with ATmega326P

Main F'n:|gram_E Fuses | LockBits | Advanced | Hw Settings Hit Info | Auto

| Fuse Walug et
| EODLEVEL Brown-out detection at WCC=2.7 Y
RSTDISBEL]
DwWEN 1
SPIEN [l
WwWDTON]
EESAWE]
BOOTSZ Boot Flash size=2043 words start address=$3800
BOOTRST [w]
CKDIE 1
CkouT O
: < CUT CkCEl Fub Cred=l Nor 91 Wb Gharkin Hre BB RESET: TEK CF 1142 |
EXTEMDED O+FD
HIGH [E] |
Lo (0xFF
Buto read
Smart warnings
Werify after pragramming Pragram] l Merlfy I [Read

| Sefting mods and device parameters.. OK!
| Entering programming made.. 0K

Reading fuses address O ta 2. 0FF, 0xDB, O<FD .. OK!
| Leaving programming mode.: 0]

Select the Program page. In the Device panel kctiecbox labeled "Erase device
before flash programming.” In the Flash panel,noged navigate to your my_eforth
hex image in your project folder.

AVRISP mkll in ISP mode with ATmega328P

| Main | Pragram | Fuses | LockBits | Advanced | HW Settings Hu Irifio | Auto
Device

Eraze device before flash programming Werify device after programming

Flash

(&) Input HEX File f‘ﬁ"\.;aﬁﬁ.f.nl.tﬁ-ai..é(amf‘n“r‘th-a.l.é‘\‘éZ‘éee‘fn‘rtH‘\my_éf‘m‘tH hex g

l Program] [Werify J l Fiead 1

EEPROM

® Input HEX File [C:\amforth-4. 2\amforth-4. Zuapplitemplatettimplate eep [E]

[Program J [Werify I I Fiead 1

ELF Production File Format

Input ELF File: | | E]

Save From: [7] FLASH [7] EEPROM [Z]FUSES [LOCKBITS Fises and lockbits settings

must be specified before
I saving to ELF

l Program] l Save

| Setting mode and device parameters.. 01

| Entering programming mode.. OF!

| Reading fuses addrees 0 to 2. 0:FF, 0:DB, 0=FD . OK!
| Leaving programming mode.: OK!

= .:.=

Your should now have the green power LED lit onAhduino Uno. The green
LED lit inside AVR ISP Mkll case (shows USB OK) atite green LED lit (shows
programmer cable OK) on the surface of the AVR N&.

Click the Program button in the Flash panel. Yolisee a dialog at the lower left

19

as the program is loaded. You may now disconiecAVR ISP mkll programmer.
However | generally keep it connected in case ehtaweload 328eForth.

24 TheTerminal Interface

After 328eForth is loaded through the AVRISP progmaer, you switch on the
USB/COM port supported by the HyperTerminal inteefgrogram (located in
Windows Accessories). Load HyperTerminal or Realteand you can now talk to
328eForth on Arduino Uno.

On the HyperTerminal console pull down the Call mand select Disconnect option.
Then, pull down the File menu and select Propedp®n. In the Connect Using
dialog box, select the COM port you saw earliethie USB device assignment.

Click the Configuration button and a COMx Propertrgndow pops up. Select
19,200 baud, 8 data bits, no parity, 1 stop bid, @m flow control. Then click OK
button to dismiss the COMx Properties window.

In the main Properties window, click on the Sesitap and the click the ASCII Setup
button, and an ASCII Setup window pops up. En@€ i@ the Line Delay dialog

box to insert 900 msec delay after sending eaehdfriext. Later you will

download source code files and you will need thig ef line delay.

Click OK button to dismiss the ASCII Setup windowClick OK button in the main
Properties window and dismiss this window also.

Now you are back to the HyperTerminal Console wimdoPull down Call menu and
select Call option, and you will see the sign-orsgsage generated by 328eForth:
328eForth v2.20

Hitting Return key several times, and you shoukltbe two send/receive LEDs flash
on Arduino Uno, andk messages are displayed on the HyperTerminal censol
You can now type in FORTH commands to interact \8&BeForth on Arduino Uno.

328eForth is case insensitive. You can type condsyaneither upper or lower case.
2.5 Testing 328eForth on Arduino Uno

To recapitulate, you have to install AVR Studi@add Arduino 0022. You have to
connect your Arduino Uno board to a USB port onnfG, and a AVR ISP mkli
programmer to Arduino Uno and to another USB poAssemble 328eForth.asm,
and upload its .hex file to Arduino Uno. Open Hyfgminal on your Windows and
you get the sign-on message:

328eForth v2.20

Type these FORTH commands to test the system:
words
100 dump
200 idump
7000 idump

20

Note that 32eForth is in the hexadecimal base \ith&arts.

After bring up 328eForth, typ& ORD&nd you will see a list of eForth commands on
the HyperTerminal console:

“& 57600 - HyperTarminal

File Edit Wiew Call Transfer Help

328eForth v2.20
ok
ok
words
VYARIABLE CONSTANT CREATE IMMEDIATE : 1 ; . $" ABORT™ WHILE ELSE AFT THEN RE
T IF AGAIN UNTIL MEKT FOR BEGIN LITERAL COMWPILE [COMPILE] , IALLOT ALLOT D- C
> > 2- 2+ 1- 1+ READ WRITE ERASE COLD WORDS .S IDUWMP DUMP ° QUIT [QUERY EXPE
NAME> WORD CHAR » { .(? . U. U.R .R CR ITYPE TYPE SPACES SPACE KEY NUMBER? [
MAL HEX #> SIGM #S5 # HOLD <# FILL CHMOYE GEXECUTE TIB PAD HERE ICOUNT COUNT +!
CK DEPTH =/ =/MOD M= = UM= / WMOD /MOD M/MOD UM/MOD WITHIN MIN MAK < U< = ABS
MEGATE MEGATE IWVERT + 2DUP 2DROP ROT 7DUP BL 2/ 2= LAST DP CP CONTEXT HLD °'E
‘TIB #TIB >IN SPAN TMP BASE 'BOOT UM+ HOR OR AND B< OVER SWAP DUP DROP >R Rk
E@ C! FLUSH It IC@ I@ @ * ERIT EHECUTE EMIT ?KEYok
o
ok
ok

il . -
Connected 00:57:22 YT100 19200 8-H-1

HyperTerminal breaks up a word at the right magjithe window console. You

will have to read across lines to see whole wordshere are 151 FORTH commands
visible in 328eForth system. There are actualyual200 eForth commands, but
many of them are hidden, without link and namediel These hidden commands are
needed to implement the 328eForth system, butatraseful in normal programming.
Therefore, | commented out their link fields andnesfields in the assembly source
file. If you are interested in how 328eForth wapiemented, and perhaps like to
modify it, you can go into the 328eForth.asm filel aemove the commenting ;'
characters before the COLON macro's. Re-assemufdeyou will see all the
commands, and you can invoke them from your neviodiary.

These 151 visible commands are documented in tpergix for your reference.

Make sure that HyperTerminal inserts a 900 ms dafiey sending each line of text.
Then, you can download a text file by pulling dowansfer Menu and select Send
Text File option. From the file selection windaselect a file and push the Open
button. Or, double clicking the selected file. xfEom the selected file will be
sent to 328eForth, one line at a time, and yoused how 328eForth responds to
these lines.

21

Send Text File @

Laok jr: | (=3 328eefarth v Q Gl i o
5 I‘j asdii,bxt 2] keyer bxt [Z] lessonto.bxt [Z] speechjst_1.t
L "3 r:_’i chronometer, bxt %] LEDpanel.kxk Iij lessonll.txt [“:’I speechjet_2.t
Iy Recent 2] dack.bxt] LEDpanel_1.kxt [Z] lessoniz.bxt [Z] string.kxt
Documents | | (2] dump,txt [Z] LEDpanel_2.txt [Z) lessont3.bxt [Z] tome txt
= [Z] Flasher kxt [£] LEDpanel_3.bxt [Z] lessonid.bxt [Z] traffic.bxt
LB E e <t [Z) LEDpanel_4.txt [Z] lessant5.bxt [Z] kraffic_1.kxt
Desktop [Z] inkerpret.bxt [E] lessant bxt [Z] lessants bxt [Z] traffic_2 bt
ﬁj interpret_1.txt r:] lessonz bxt E] lessonl7.bxt EI trafficControl
I‘j interpret_2.txt F—J lesson3.txt |"§] lessons. kxt m KTEST.kxt
fi_’i interpret_3.txt %] lessond . txt Fl_‘1 marker bxk |'§| zeneForth, bzt
|';_1 interpret_4.txt i‘-j lessonS kxt I§:| opkiboot, bk
y Documents o =
[} interrupt kxt £} lessons bxt [=] servo.kxt
= [Z] interrupt_1.bxt 2] lesson7 bxt [Z] soundgin txt
_' ',g [E] in-core. kxt [£) lessona bxt [Z] soundain_dema. bt
.) [£] 1R _tsop.txt [Z] lesson bxt [Z] speechjet.t
My Computer Type: Text Document
% Date Modified: 6/15/2011 7
= - | Size: 1.60 KB
‘} File narne: | Hello-world. tat b pen
! E

My Netwark | Files of type: | Teut file [~ TT) v Cancel

Bill Ragsdale had written for a set of demo appicaes for Arduino with AmForth.
| modified these files so that they work propemdar 328eForth. To test them,
download and test the following files in this order

File Function

hello-world.txt The universal greeting

marker.txt Tools to delete commands and reload file

io-core.txt Core commands to read and write |0stegs

flasher.txt Blink on-board LED

tone.txt Generate audio tones

keyer.txt Morse code practice kit

chronometer.txt A stopwatch to measure time to ebeea command.

dump.txt A smart dump program to display RAM arasH
memory.

Bill put in lots of comments in these files. Rehdm carefully and follow his
instructions to test the application commands. eidi file is downloaded, there are
usually a list of commands that you can type isge how things work.

After downloading flasher.txt, you can type thesenmands:
DECIMAL \ so that 1000 MS delays for 1 sec
1000 3 MANY \flash Digital Line 13 LED 3 times,

\ on 1 sec, off 1 sec.

After downloading keyer.txt, you can type these n@mnds:
Vv \ dit dit dit dah
SOS \ distress signal

Of course, it assumes that you have a speaker ctwth® Digital Line D6, and can
generate an audio tone with these commands.

After downloading dump.txt, you can use Bill's sti@dMP command as follows:
HEX

22

100 80 RAM DUMP
7000 100 FLASH DUMP

There is no FORGET, which trims back the dictionasycontinually coordinating
allocation in two address spaces is difficult. tHa marker.txt file, Bill defined a
defining command MARKER, that compiles a commarat thill trim the dictionary
back to a starting point. Use it as:

marker chop-point
Later executing

chop-point

will act like:

forget chop-point

Bill generally begins his code modules with:

chop-XX

marker chop-XX
The first chop-XX will cause an unknown commandeand then marker creates it
again. Later recompilations will execute the faesbp-XX cutting back the
dictionary and then replace the chop-XX command.

2.6 Learning Moreabout eForth

If you are new to the FORTH programming languagdyas some prior knowledge
on a different FORTH system, you may want to lautk ia series of tutorials |
prepared for the earlier eForth systems. Therd&atessons in that many text files.
Your are encourage to take these lessons andriyipe commands. You can also
download these files in HyperTerminal, and theretypthe final commands to test
loaded applications. These lessonXX.txt filesinobuded in the distribution
package with 328eForth.asm.

The contents of these lesson files are listederfallowing table:

Lesson Contents

1 Hello, World!

2. Big characters

3. Forth Interest Group

4. Repeated patterns

5 The theory that Jack built
6 Help

7 Money exchange

8 Temperature conversion
9 Weather reporting

10 Multiplication table

11 Calendars

12 Sines and cosines

13 Square roots

14 Number conversion

15 ASCII character table
16 Random numbers

23

| Guess a number

24

Chapter 3. What eForth Does But Arduino Cannot
What can eForth do over and above Arduino 00227

One quick answer | can give you is to ask you tgpmthe following command:
0 DUMP
80 DUMP

and you will see the following display in the Hyperminal console:

“& 57600 - HyperTerminal
File Edit VYiew Call Transfer Help

=
=
=
=
=
-
-
(L]

SO
=
=
(=]
=
[=n]
=
(=
=
SoODoE@MeE
[=p]
=
(=]
=
L= ol
Do~ @@DToE
L=
SO

O O

90 66@6@6@6@6@6@6@6@6@6@6@6@66@6@””W""
B6 0 B0 0 0 0660 B6B OBFSFEFF 0 0 68 60

DO 60 660 60 60 60 60 68 60 60 60 60 60 60 60 68 60 *'° ' Tt
FO 60 66 60 60 60 60 60 60 60 60 60 680 60 60 68 60 """ " ok

& . -
Connected 01:03:44 ¥T100 19200 8-H-1

In this display, you see the RAM memory of ATmeg@B2rom location O to location
$FF. If you had read the AVR Microcontroller D&aok, you would know that the
first 32 bytes are 32 registers in ATmega CPU nifvet 64 bytes from $20 to $5F are
the 1/0O registers, and the last 160 bytes fromt$6kFF are Extended 1/O registers.
Many of these registers are not implemented asigdiydevices, and they show up
containing $60. Actual I/O registers show thetuatcontents.

You can examine the contents of every CPU anddffister any time. You cannot
do it in Arduino.

Even better, you can change the contents of the &flU/O registers! As the CPU
registers are used by the 328eForth system, | i;esommend your changing them
without knowing exactly what you are doing. Younaasily crash the system if you
advertently change some of the critical CPU reggste However, there is no better
way to learn the I/O devices in ATmega328P thastwdy the register definitions and
functions of the bits in these registers, and tnge these bits while observing the
signals coming out of the corresponding 1/O pins.

25

Once you understand the control, status, and dgtsters in an I/O device, you can
write a short FORTH command to exercise this detheeway you eventually will
use it. This command to test the device will gtovibe a part of your application.

In the following sections, | will show you how tbange some of the 1/O registers
directly with C! commands, to operate these I/Oices: You need that thick 566
page AVR Microcontroller Data Boot opened on yoomputer, and read the register
definitions to follow the discussions. | will shoy@u addresses of the I/O registers,
but you will have to look up the definitions of ®ih these registers to go along. Itis
difficult at first to read register addresses aondtents in hex, but | hope you will get
used to them. It will be very rewarding when yee shat these bits actually work
and produce results you can observe visually.

The best way to wade through this thick Data Baotoitest the devices interactively
with 328eForth.

Are you ready?
3.1 USART

The first device | will discuss is the serial USARport, because it is the only I/0O
device used by 328eForth. It has the followinga$eeqgisters:

Address | Register| Name Function Initial
Value

$CO UCSROA| Control and status | Status of transmitter and --
register A receiver

$C1 UCSROB| Control and status | Interrupt, enabling, data $18
register B format

$C2 UCSROC| Control and status | Mode select, start, stop, parity$6
register C

$C4 UBRROL | Baud rate register | Baud rate divisor, low byte $33
low

$C5 UBRROH| Baud rate register | Baud rate divisor, high byte 0
high

$C6 UDRO Data register Transmitted or received ddt --

UCSROA reports the current status of the USARTOB@B&RO contains transmitted or
received data. These registers change dynamimatlydo not require initialization.
UCSROBI/C selects 1 start bit, 8 data bits, 1 sthmb parity and no flow control.

The UBRROL/H registers set USARTO up to run at @9,Baud. Do not change
these 4 registers unless you know what you aregdoiif you mess up these registers,
Arduino Uno will not talk to the HyperTerminal agdu have to reach for the reset
button.

Read AVR Data Book to learn what each bit in UCSRDB doing. You can
understand these bits better when you are actisalkng at them on the
HyperTerminal console.

One easy experiment you can do is to change the fadel register UBBROL from

26

$33 to $66 by typing the following commands:
$66 $C4 C!

If you are in hexadecimal mode, you do not havigpe the $ prefix before numbers:
HEX 66 C4 C!

The baud rate is changed from 19,200 baud to $9808. Now, HyperTerminal
stops talking to Arduino. Pull down Call menu aastect Disconnect option. Pull
down File menu and select Properties option. énRloperties window, change the
baud rate to 9,600 baud. Connect the phone limeeAeduino will talk to
HyperTerminal at 9,600 baud.

Type ODUMP commands, and you will see that contents of UBRR@ister at C4 is
changed to 66.

Type the following commands to get back to 19,280d
33 C4 C!

Change the baud rate of HyperTerminal back to I®2ud so Arduino will talk
again.

Always return HyperTerminal to 19,200 baud. Otheeywhen Arduino Uno is
reset and reverts to 19,200 baud, you would spéodgatime wondering why
Arduino does not talk to the HyerTerminal. It adghuse a panic, if you forget that
they are using different baud rates.

3.2 GPIO Port B

The Digital I/O Line 13 on Arduino Uno is connectedbit-5 of GPIO Port B, PB-5.
Port B as a general purpose I/O device has thewoil registers:

Address | Register| Name Function Initial

Value
$23 PINB Input register Status of input pins -
$24 DDRB Direction register 1: output; O: input 0
$25 PORTB | Data register Output data, pull-up tesis | 0

Setting a bit in DDRB register makes the correspangin an output pin. Then,
writing this bit in PORTB register sends it to thaput pin. It is very easy to turn
the LED connected to Line 13 on and off by thedaihg commands:

HEX

20 24 C! \ make Line 13 an output pin
20 25 Cl! \ turn Line 13 LED on
0 25 CI! \ turn Line 13 LED off

If you read AVR Data Book carefully, you will finithat when a pin is set up as an
output pin, writing a 1 to that bit in PINB registgill toggle this output pin. Try the
following commands and you can verify this function

20 23 C! \ toggle Line 13 LED

20 23 C! \ toggle Line 13 LED

27

Type 0 DUMP commands and you can see the current state s tiegisters as you
turn the LED on and off.

Now, we can replicate what the BLINK sketch exangdes in Arduino 0022. Here
is the program in FORTH:

:MS (n--)FOR AFT $1CB FOR NEXT THEN NEXT ;

: BLINK 20 24 C! BEGIN 20 23 C! 400 MS AGAIN ;

FLUSH

BLINK

400 in hexadecimal equals to 1024 in decimal. $&0will cause a delay of about
1 second. Execute BLINK will cause the Line 13 Liiblink forever.

BLINK sketch is the first program every Arduino usens It gives you a warm and
fuzzy feeling that you are making Arduino Uno dongthing significant. However,
the above FORTH BLINK program is the silliest pragra FORTH programmer can
ever write. It is an infinite loop you cannot geit, unless you push the reset button
or pull the power plug off. The ATmega328P micnairoller is not made to run
BLINK. Itis much more powerful and much more ihgent than just turning a
stupid LED on and off.

A thoughtful FORTH programmer would write this pram instead:
- BLINK 20 24 C! BEGIN 20 23 C!'400 MS ?KEY UNTIL DROP;
FLUSH
BLINK

This program will blink the LED forever as the éarlone. But, when you are tired
of looking at this stupid LED, you can stop it lnggsing any key on the keyboard.
You can exit the loop. Now, you can type in otb@mmands to the 328eForth
system, and do other useful things.

328eForth is you friend. It can help you expldre wonderful world of
ATmega328P.

If a bit in DDRB is cleared to 0, the correspondjig becomes an input pin.

Initially this input pin is tri-stated. If you séte corresponding bit in PORTB
register to a 1, this input pin will be pulled t@d/by an internal pull-up resister.
This pull-up resister is very useful and it simiglsf the external circuitry of many
input devices. For example, you can connect tipsatipin to a push-button switch
with its other terminal grounded. If the switchopsen, you will read a high on the
input pin, because of the pull-up resister. Ifskétch is closed, you will read a low
on the input pin.

Try this on Digital 1/O Line 8, which is connectemBit-0 in Port B. Type the
following commands to test the switch:

0 24 C! \ make all Port B pins input

125 Cl! \ turn on pull-up resistor for Line 8

23 C@ . \ read PINB port and show its contents
23 C@ . \ repeat with switch on and off

28

3.3 Timer/Counter0 and Tone Gener ator

ATmega328P has three very powerful, and hence coatetl, timer/counters. They
can be used as timers, counters, pulse width mutajaand square wave generators.
Timer/CounterO and Timer/Counter2 have an 8 bintewuregisters, and
Timer/counterl has a 16 bit counter register. keavill follow Bill Ragsdale's

tone generator example in tone.txt file, and useefiCounterO to generator audio
tones.

Timer/CounterO had the following registers:

Address | Register| Name Function Initial
Value
$44 TCCROA | Control register A Mode select 0
$45 TCCROB | Control register B Clock select 0
$46 TCNTO Count register Counter value 0
$47 OCROA | Output compare Compare value. When equaDd
register A to TCNTO, generate output gn
OCOA
$48 OCROB | Output compare | Compare value. When equaDd
register B to TCNTO, generate output gn
OCO0B

The bits in Control Registers A and B are compédaand you have to read the AVR
Data Book to understand them. To run Timer/Counéara free run counter, set it
up in the CTC (Clear Timer on Compare Match) modstore a value in OCROA
register to specify the period of the audio ton€onnect a speaker to Digital I/O
Line 6, which is on Bit 6 in Port D, PD-6, and aggles by the output compare signal
of OCOA. Here are the commands you have to type:

HEX

40 2A C!' \makeOCOA(l/OLine6,PD-6)anoutp utpin

42 44 C! \ toggle OCOA on compare match, CTC mo de
FF 47 C! \ maximum count in OCROA to compare

3 45 C! \ select /64, prescaler=3, start count er

You will hear a tone from the speaker, if everythis set up correctly. To turn off
the speaker, type:
0 45 C! \ prescaler=0, no clock to timer/count er0

Storing a value from 1 to 5 into TCCROB changespitescaler between the master
clock and Timer/Counter0. Each step in the preséatreases the prescaler divisor
by a factor of 4 or 8, and you can hear the totehpihanges drastically. To make
smaller changes in the tone pitch, change the val@CROA register at location $47.

Arduino Uno has a master clock of 16 MHz. Witl64 prescaler, the clock to
Timer/Counter0 is 250 KHz. With a divisor of 2355@CROA register, the pitch we
get from OCROA is about 490 Hz. You can play with prescaler and the value in
OCROA to get different pitches.

29

Now, let us try to run Timer/Counter0 as a PMW @geulvidth Modulator) device.
Remove the speaker from Digital I/O Line 6, andrezzt an LED to it. The anode
pin (long leg) is connected to Line 6, and the cdéh(short leg) is connected to
ground. Type in the following commands:

HEX

40 2A C!' \ /O Line 6 is set up as an output pi n

83 44 C! \ TCCROA, fast, non-inverting PWM mode

80 47 C!' \set OCROA to mid-range

3 45 C! \ prescaler=3, start PWM

The LED will be turn on to medium brightness. Reaglthe brightness by typing:
10 47 C!' \decrease LED brightness

Increase the brightness by typing:
FO 47 C! \increase LED brightness

Now change to the fast, inverting PWM mode:
C3 44 C! \ inverting PWM mode

PWM output is now inverted. Storing a bigger valu®©CROA reduces LED
brightness. Storing a smaller value in OCROA iases LED brightness.

If you have an oscilloscope, you can watch the PWéweforms. Then, you will
really appreciate the ease in using 328eForth méralyour hardware.

You can change the PWM to the phase correct modypyg:
81 44 C! \non-inverting phase correct PWM mode
or,
C1 44 C! \ inverting phase correct PWM mode

Changing the count value in OCROA and the prestal€CCROB, you can
experiment with Timer/Counter0 to you heart's delig You need an oscilloscope to
see the waveforms, and preferably some servo mmoezally see the PWM output
doing real work.

The base frequency of the fast PWM oscillator is:

Prescaler Base Frequency

31.2 KHz

7.81 KHz

980 Hz

244 Hz

g WN|EF

61 Hz

3.4 Timer/Counterl
Timer/Counterl has a 16-bit counter which offerdevidynamic range and higher

accuracy in timing/counting. It is also more coiogied than Timer/CounterO and 2.
Nevertheless, their operations are very similarill Flagsdale wrote a chronometer

30

program to measure execution time of FORTH code | dike to reproduce this
measuring function with Timer/Counterl.

The registers and their functions in Timer/Countand as follows:

Address | Register| Name Function Initial
Value
$80 TCCR1A| Control register A Mode select 0
$81 TCCR1B| Control register B Mode and clock select 0
$84 TCNTI1L | Count register Low| Counter value loweoyt 0
$85 TCNT1H | Count register High| Counter value high byte 0
$88 OCRI1AL | Output compare Compare low byte. When 0
register A Low equal to TCNT1, generate
output on OC1A
$89 OCR1AH| Output compare Compare high byte. 0
register A High

You first clear TCCR1A to set up Timer/Counterthe normal counting mode. To
time an event, you clear the 16-bit counter TCNmd store a prescaler value into
TCCRA1B to start the counter. After the event, clBaCR1B to stop the counter.
Then, read the accumulated counts in TCNT1 counter.

Before doing all these things, let us first downldle marker.txt to compile the MS
function. Then, type in the following commands:

HEX
0 80 C! \clearTCCR1Atosetupnormalcountin gmode
084! \ clear 16-bit counter TCNT1

581 C! 100 MS 0 81 C!
\ time '100 MS' commands
84 ? \ read counts in TCNT1 counter

Let us stay in hexadecimal base, and 100 MS déay&b6 milliseconds. 400 MS
delays for 1.024 seconds. My experiments show'®sliS' takes $220 counts, '100
MS' takes 1262 counts, and '400 MS' takes $432@tsou They look right to me.

With a prescaler of 5, Timer/Counterl overflowsladut 4 seconds, while
Time/Counter0 would overflow at about 16 millisedesn To generate waves at 1 Hz
range, you have to use Timer/Counterl. We carklibED at 1 second periods
using Timer/Counterl, if we connect a LED to thenpare output pin OC1A, which

is the Digital I/0O Line 9, or PB-1 port.

HEX

2 24 C! \ set DDRB PB-1 (Line 9) as output pin

40 80 C! \ set Timer/Counterl to CTC mode

8000 88! \init OCR1A compare register to a val ue
B 81 C! \ CTC mode, prescaler=3, start wave

Changing the prescaler/mode value in TCCR1B chatigefgequency of the output
wave. The frequency and value in TCCR1B are shasviollows:

31

TCCR1B Value| Prescaler | Divisor Frequency
9 1 1 244 Hz

A 2 8 30.5 Hz

B 3 64 3.75 Hz

C 4 256 0.96 Hz

D 5 1024 0.24 Hz

35 ADC

Analog to Digital Converter is the most interestiagd probably the most
complicated device in a microcontroller. In ATm8g&aP chip, we have 6 channels
of ADC to read analog signals from external cirguihaking it extremely useful for
real applications looking at real analog signalBrom a programmer's point of view,
its ADC is not very complicated, and we only havevorry about the following 5
registers:

Address | Register| Name Function Initial

Value
$78 ADCL Data register Low Data low byte 0
$79 ADCH Data register High Date high byte 0
$7A ADCSRA | Control register A Control, status, and prescaled

bits
$7B ADCSRB| Control register B Auto-triggering source 0
$7C ADMUX | Multiplexer \oltage reference and 0
selection register | multiplexer section

ATmega328P has an internal temperature sensorectathto Channel 8 of the ADC
device. In addition, the internal 1.1 V referenoiage is connected to Channel 14,
and a ground is connected to Channel 15. Theser@lsmare very useful in testing
the ADC.

Using 5 V power for reference and measuring thermal 1.1 V source, set up the
ADMUX register and start the conversion this way:

HEX

4E 7C C! \ select 5 V reference; select Channel 14
C3 7A C! \ enable/start ADC; select /8 prescale r
78 ? \ display results, nominally $E0

For reasons | do not understand, a prescaleriasswould not start ADC
conversion in this mode of operation. The follogdommands measures the
ground on Channel 15:

4F 7C C! \5Vreference; groundinputon Chann el15
C3 7A C! \start conversion
78 ? \ display results, 0

The temperature sensor is connected to Channebl8t & recommended in AVR
Data Book to read it with the internal 1.1 V soufaereference. Type the following
commands:
C8 7C C!' \C selects 1.1 V reference; 8 selects
;temperature sensor

32

C3 7A C! \start conversion
78 ? \ display results, nominally $160

If you connect an external analog signal sourd@ecA0 pin, then type the following
commands to read its analog value:

127 C! \setupAOasinputpin,whichisonPC -Oport
1 28 C! \ turn on pull-up resister on A0 pin

40 7C C!' \ setup reference and multiplexer inpu ts
C3 7A C! \start conversion

78 ? \ display results

3.6 Build aTurnkey Application

In the FORTH parley, 'Turnkey' means configuring@RTH system so that when
power is applied and the system boots up, it ireea all the hardware devices in the
system and start to execute the application itaessgned to run. In 328eForth, you
write lots of new commands. These commands a taseuild more power
commands until the last command looks like this:

- APPL SETUP BEGIN READ-INPUTS SEND-OUTPUTS AGAIN ;

To turnkey this application so that it executes ABBEmmand on booting-up, type the
following commands:

"APPL 'BOOT ! \storeaddressofAPPLinvariable '‘BOOT
$100 ERASE \ erase flash

$100 $100 WRITE \ save RAM $100-17F to flash $100- 17F
$180 ERASE \ erase flash if this page is used

$180 $180 WRITE \ save RAM $180-1FF to flash $180- 1FF

Now, the ATmega328P has the 328eForth system wétltdomplete application saved
to the flash memory. When the Arduino Uno is resgiowered up, APPL will run.

Actually, after APPL command is compiled, all FOR€6immands are already stored
in the flash memory, but all the variables ard 8tiRAM. Assuming that necessary
data in RAM that have to be saved are between Réddtions from $100 to $1FF,
the WRITE commands above save them all to the fiasimory from $100 to $1FF.
When 328eForth boots up, it automatically copies¢hitwo pages from flash to RAM,
and APPL will start with all the necessary dat&&M.

With this limitation that you can save and restoméy 256 bytes of RAM memory,
you can build any turnkey application for ArduinoadJ

33

Chapter 4. Featuresin 328eForth Implementation
4.1 Addressing Memory

Flash memory in ATmega microcontrollers is orgadizel16-bit cells. This allows
addressing to the full 128 Kbyte flash memory wlithbit addresses. In
ATmega328P the flash memory runs from cell addiness0000 to 3FFF or decimal O
to 16,383. RAM and EEPROM memories are byte adeks

In 328eForth, | chose to address flash memory ta)yo that it is easier to move
data between flash memory and RAM memory. Altho&§imega328P execute
code in 16 bit cells, when you read and write thslf memory, you actually have to
use byte addresses in the Z register, and it igalab use byte addresses to move
data in or out the flash memory. Therefore, in€d28th all flash addresses are byte
addresses. Only when executing a command, itauéracaddress in bytes is
converted to a cell address. When you retrievadainess from flash memory or
from the return stack, you have to convert it frarcell address to a byte address
before operating on it.

4.2 Flash Programming

ATmega328P, with its Harvard architecture, is Veogtile to FORTH. It is difficult
to extend the FORTH system in flash memory. Amrdgmonstrated that we can
add new FORTH commands to the flash memory uspgaitive command I!.
However, it writes to flash memory one cell atradj and this is very inefficient
because it has to erase a page of flash memorwatedthe modified page back to
flash. It could quickly exhaust the allowed eragée cycles in the flash memory of
ATmega328P.

The flash memory in ATmega328P is specified to eadi®,000 erase-write cycles.
You have to be very careful about these erase-wyitkes when you add new
commands to the FORTH system. To minimize theeevase cycles and to extend
the life of flash memory, | took out the big gunG@huck Moore's arsenal: the
ping-pong BLOCK buffers.

| use two 128 byte page buffers in RAM to store poed code. New FORTH
commands are compiled into these buffers. Twodbsifire necessary so that
forward references can be resolved across a pagelag). Otherwise, many more
erase-write cycles would be wasted when buildingcstires in adjacent pages of
flash memory. Only when both buffers are full, bdast recently used buffer is
flushed into the flash memory, before a new pagéash memory is read into this
buffer.

The disadvantage is that after a new command isetEfyou cannot execute it unless
it is being flushed. Executing a command in adufiill definitely crash the system.
Always remember to includeFLUSHcommand at the end of a source code file.
When you are compiling lines of code you type @member to do BLUSHbefore
executing any command you just typed in. Otherybgeprepared to reload the
system from AVR Studio 4. This error will happéelieve me, and it is disturbing.
But, remember we are dealing with a microcontrpb@d its flash memory can

34

endure only 10,000 erase-write cycles.
4.3 Number Formats

328eForth accepts only 16 bit numbers, positivgatiee and prefixed. Number are
accepted and converted according to a radix siaredriable BASE. The radix is
set by the commands DECIMAL, HEX and BIN. Indivedusnumber may be
prefixed by $ for hex. It will be converted withtaegard to BASE.

328eForth does not handle double integers in ishb@n input and out put commands.
4.4 Memory Spaces

Fetch and store commands exist for the two addesses (flash: 1@, IC@, I!; and
RAM: @, !, C@, C!). Parameters for constants &eesl in flash, for variables and
values, in RAM. The reason is to use slow to witdeh for constants that are not
changed, and variables and values in RAM thatssttawrite. EEPROM memory
is not used in 328eForth.

Care must be taken to know in which memory thecalion commands operate.
These includ€REATE, DOES, ALLOT, IALLOT,:,",',CMOVE,DUMP,
IDUMP, READ, WRITE, andERASE.

The top of each memory space is denoted by vasaBRefor the flash dictionary,
andDPfor RAM. Note these are variables so their adsbesre passed to the stack
upon their execution.

Two pages of flash memory from $100-1FF are resktoestore initial values of
variables and values. On boot-up, these two pagesopies to RAM at $100-1FF.
When you want to build a turnkey system, this RAMaamust be saved back to flash
memory, so that next time the system boots up,vaues are copied from flash to
RAM.

Since flash memory is organized in 128 byte pag@smands operating on flash
memory likeDUMP, READ WRITEandERASEall use page memory addresses and
they operate on data in page®UMRalso displays data in 128 byte pages, although
it displays RAM memory.

There ardUMR.ommand to view RAM memory atBUMP command to view flash
memory. They both accept a byte address and d@@yites from the
corresponding memory. 128 byte page is a convenieed even for data in RAM
memory.

45 Files

ATmega328P has only 2 KB of RAM memory, and itas enough to handle files and
other mass storage requirements. At present sfilesare sent to 328eForth for
compiling through the serial terminal USB/COM porflo allow for interpretation
and compilation, a pause must be inserted at tth@teach line of text sent to
328eForth. | setthe end of line delay in Hyperdieal to 900 ms. It probably

35

could be half this value. Upon a compiling erroregiror message will be shown,
but execution continues as the next lines of texstéll streaming out of the serial
port. You must manually watch for compilation esto Generally, one error will
cause many other errors, and 328eForth would d¢fésthies to execute commands in
the flash buffers. When this happens, reload 3@8kFrom AVR Studio 4.

4.6 Case Sensitivity

Both AmForth and eForth are case sensitive. AniiFases lower case names and
eForth uses upper case names. 328eForth is msglénsansitive so that it can
compile source code written for both AmForth andré:. The command names in
328eForth are all in upper case, and commands tydedver case are all converted
to upper case before searching the dictionary. e nidmes of new commands are all
converted to upper case when they are compileddictemnary in flash memory.

Case insensitive system is very friendly to yotirgjtin front of a terminal.
However, you should also be careful in choosingesmfor commands so that they
are not duplicated inadvertently.

4.7 What 328eForth Does Not Have

328eForth has no compiler security to check orptigng of conditionals when
compiling structures. Having an exalENin a colon definition will almost
certainly blow the system up as it will write fomeldink randomly in earlier flash
memory. In this case, execution will show odd exyand you have to reload the
328eForth hex images. Do be careful when writivesé structures:

IF...THEN

IF...ELSE...THEN

BEGIN...AGAIN

BEGIN...UNTIL

BEGIN...WHILE...REPEAT

FOR...NEXT

FOR...AFT...THEN...NEXT

Remember: Structures can be nested but canndapver
328eForth does not support interrupts, multitaskirsgr variables, and local variables.
However, the first 256 bytes of flash memory asereed for interrupt vectors and

for short interrupt service routines.

All commands in the 328eForth dictionary are linke@ single vocabulary. No
multiple vocabularies.

328eForth does not have an assembler. If you teeeede assembly routines, use
AVR assembler in AVR Studio 4.

All these features can be added to 328eForth. iBistbetter to keep it simple so

people can understand if fully. If you have sgeaikeds for specific tasks, | am
sure you can somehow implement them or have p¢oplelp you.

36

ATmega328P is a small microcontroller. 328eFosth seed we plantinit. You
can make it to grow into something useful for you.

37

Chapter 5. 328eForth Source Code

ATmega328P is a very interesting microcontrollemnirAtmel Corp. It has an 8 bit
CPU with 32 8 bit registers, 32 KB of flash memd@yB of RAM memory, 1 KB of
EEPROM memory, and a host of I/O devices. It tdpced in a 28 pin DIP
package, with 20 I/O pins. It is ideally suitabde many embedded applications. It
is can be programmed to be a FORTH Virtual Machine.

The CPU registers are assigned various functionsned in a FORTH Virtual
Machine as follows:

Register Alternate Name Function

pc Program counter

sp Return stack pointer

ro Reserved for multiply and memory operations
rl Reserved for multiply and memory operations
r2 zerol Provide constant O

r3 zeroh Provide constant 0

r4 Not used

r5 Not used

ré Not used

r7 Not used

r8 Not used

r9 Not used

r10 Not used

ril Not used

ri2 Not used

r13 Not used

rl4 temp4 Scratch pad

rl5 temp5 Scratch pad

rl6 tempO Scratch pad

rl7z templ Scratch pad

rl8 temp?2 Scratch pad

r19 temp3 Scratch pad

r20 temp6 Scratch pad

r21 temp7 Scratch pad

r22 looplo Flash memory operations

r23 loophi Flash memory operations

r24 tosl Top of parameter stack low
r25 tosh Top of parameter stack high
r26 x1 Scratch pad

r27 xh Scratch pad

r28 yl Parameter stack pointer low
r29 yh Parameter stack pointer high
r30 zl Used for memory address low
r3l zh Used for memory address high

In 328eForth system, we adopt the Subroutine Timgadodel, in which tokens are
represented by subroutine call instructions, andrapound command consists of a

38

list of subroutine call instructions. Nested tolists, as nested subroutine lists, are
executed naturally by ATmega328P CPU with verjelittverhead in the nesting and
un-nesting of subroutine calls and returns. &8 possible to mix tokens with
CPU machine instructions when optimizing FORTH caanads.

Using the Subroutine Threading Model, physically tompound commands has the
identical structure as the primitive commands, laoith types of commands are
generally terminated byr@t machine instruction. However, in the assembly
source listing, we still use tl@ODEMacro to initialize a primitive command, and the
COLONmacro to initialize a compound command, althoGgDEandCOLON

macros are identical.

The CPU stack pointer registgp is used as the return stack pointer in the FORTH
Virtual Machine, and the register pgit ; yl is used as the parameter stack pointer.
Both the return stack and the parameter stackoaegdd in the high end of the RAM
memory area. The top element of the parametek saached in register pair
tosh:tosl , and it significantly increases the speed in asiogshe parameter

stack.

Thezh:zl register pair is used to address flash memory.e 4rtegister pairts
X, Y, andz support many 16 bit operations, and make ATmegaa8ing almost like
a 16-bit CPU. They are used extensively in thenpire commands in 328eForth.

Besides the stacks, the RAM memory area also eonidi system variable, the
terminal input buffer, two buffers to access flasamory, areas for new variables and
for input and output strings.

ATmega328P distinguishes two sections in its flagmory: a NRWW section in the
high end of flash for bootloader, and a RWW seciiotine low end for application
code. 328eForth puts its primitive commands aedrterpreter in the bootloader
section, because the interpreter must compile rm@apound commands in the
application section of flash memory. As the 4KB@&pin the bootloader section is
not big enough to host the entire 328eForth systeamy compiler command are
stored in the lower application section, which space to add (compile) new
compound commands.

A major advantage in using FORTH to develop sofenarmicrocontrollers is that we
can interactively write and test small pieces afecon the target microcontroller.
Writing and testing many small code fragments aatBvely necessitates writing and
erasing flash memory, which will be problematic dese flash memory have limited
erasing cycles or life endurance. It is absolutelgessary to conserve flash memory
erasing cycles. In 328eForth we use two 128-bgtgep of RAM memory to store
new code to minimize flash memory erasing cyclégdnly when both buffers are full,
the least used buffer is flushed to flash memofgredt is used to access another
page of flash memory.

In the original eForth Model, only 30 primitive comands were defined to enhance its

portability to a wide range of microcontrollers.n the 328eForth implementation, to
make it run as fast as possible, many compound @rdmare re-written in AVR

39

assembly code, and all compound commands in tego@ter are coded using the
relative callrcall and relative jumpjmp machine instructions, so that they can be
squeezed into the 4 KB space in the bootloadeiosect The compound commands

in the application section have to be coded usingtall and longmp

instructions, because they have to call commarnkérbootloader section, which is
outside of the range otall andrjmp machine instructions.

It is unfortunate that the 328eForth has to usédtwtloader section to store its
interpreter, and thus makes it incompatible wignAlnduino bootloader. You have to
make a choice to use one or the other. | hopeythawvill be convinced that
328eForth is a much better programming languageopadating system for program
development, and choose to use it in your futuogepts.

In the following sections, | will present the 32&efh system in its complete source
listing. The source code is commented liberalldjowever, in-line comments are
only adequate to document the functions of thecoode, but not sufficient for the
intentions behind the source code. To give mymahiugh room to discuss the
structures and the design requirements of all timencands, for one section of source
code, | add another section for comments. | hbgeformat will let me explain
more fully what the commands do and what was iredrfdr them to do.

; TITLE Atmega328 eForth
.nolist
.include "m328Pdef.inc"

328eForth v3.01, Chen-Hanson Ting, July 2011
Fix error, quit, 2/ and ?stack

; 328eForth v2.10, Chen-Hanson Ting, March 2011
; Adapted from

; 86se4th.asm by Richard Haskell
: Amforth by Matthias Trute
; Assembled with AVR Studio 4 from Atmel
: -Subroutine threaded model
; -Uniform byte addressing for flash, RAM and regis ters
; -Ping-pong block buffers for optimal flash progra mming
; -FORTH interpreter & tools are in NRWW flash

; -FORTH compiler & user extension are in RWW flash

; -No interrupt, no multitasking

; -turnkey capability

;. -Case insensitive

; -9600 baud, 1 start, 8 data, no parity, 1 stop bi t

; ANS FORTH compatible, but not compliant.

Subroutine threaded eForth; Version. 1.0, 1991
by Richard E. Haskell

Dept. of Computer Science and Engineering
Oakland University

Rochester, Michigan 48309

eForth 1.0 by Bill Muench and C. H. Ting, 1990
Much of the code is derived from the following so urces:
8086 figForth by Thomas Newman, 1981 and Joe smit h, 1983

40

aFORTH by John Rible
bFORTH by Bill Muench

Thegoalofthisimplementationistoprovideas impleeForthModel
which can be ported easily to many 8, 16, 24 and 32 hit CPU's.

; You are invited to implement this Model on your f avorite CPU and
contribute it to the eForth Library for public us e. You may use
a portable implementation to advertise more sophi sticated and
optimized version for commercial purposes. Howeve r, you are
expected to implement the Model faithfully. The e Forth Working
Group reservesthe rightto rejectimplementation which deviates

significantly from this Model.

; Representing the eForth Working Group in the Sili con Valley FIG
Chapter.

; Send contributions to:

; Dr. Chen-Hanson Ting

;156 14th Avenue

;. San Mateo, CA 94402

; (650) 571-7639

; ting@offete.com

5.1 FORTH Virtual Machine on AT mega328P

328Pdef.inc contains all the register names and names ofrbiteese registers.
It is included here first so that we can refertte tegisters and bits with mnemonic
names.

In the original eForth Model, a small group of FGHRRGommands were identified as
kernel commands, low level commands, or primitiwexmands. These commands
were coded in machine instructions of the host opicycessor. They allow the
underlying microcontroller to become a FORTH Vittieachine. All other
commands were written as lists of commands, andalked high level commands or
compound commands. Compound commands are ligtsnoitive commands and
other compound commands. This division of commavais very useful in porting
eForth to many different microprocessors, becanbemimitive commands needed
to be rewritten when moving eForth to a new micoepssor.

In 328eForth, we retained this division. Howeweg,use the Subroutine Threading
Model and optimize many compound commands so tigasystem executes at the
highest speed and occupies the least memory sp&tlecommands that can be
optimized are re-coded in assembly.

ATmega328P addresses RAM memory in bytes, but addseflash memory in 16-bit
cells. Two different addressing mechanisms makdficult to move data between
these two memory areas. After agonizing overdtifsrence for some time, |
decided to address all memories in bytes. Whertryoto read and write the flash
memory, you will find that you have to read andtevit in bytes. We might just as
well use byte addresses to access flash memoryaytefaddress is converted to a cell

41

address which you have to jump to locations inhflas to execute code in flash.

Two 128-byte buffers are allocated in RAM to holtalto be written into flash
memory. These buffers minimize erasing cyclesastf memory.

The original eForth Model is case sensitive. 328#Hs made case insensitive by
converting all input characters to upper case,aincbmmand names are stored as
upper case characters. This is very useful in damgpapplications from different
sources, where FORTH commands might be in uppsgriamr mixed cases.

The only I/O device required by 328eForth system serial UART device operating
at 19,200 baud, 1 start bit, 8 data bits, not patistop bit, and no flow control.
Since in ATmega328P, all I/O registers are mappemthe first 256 bytes in the
RAM space, we can conveniently control all its dévices by C! and C@
commands.

328eForth is intended to be used by first time FBR$ers. Interrupts and
multitasking are not supported. Nevertheless, iprons are put in so that
sophisticate users can add interrupts. The fB6ti®tes in the flash memory is
reserved for reset and interrupt vector table. dyd 256 bytes in the flash memory
are used to store initial values allocated to RABMmry locations $100-$1FF.
Therefore, you can build a turn-key applicatio®irmega328P with 328eForth
system.

;> Version control

.EQU VER= 2 ;major release version
.EQU EXT= 2 ;minor extension

;; Constants

.EQU COMPO = 3040 ;lexicon compile only bit

.EQU IMEDD = $080 ;lexicon immediate bit

.EQU BASEE = 16 :default radix

.EQU BKSPP = 8 ;back space

.EQU LF = 10 ;line feed

.EQU CRR = 13 ;carriage return

.EQU RETT = $9508

.EQU CALLL = $940E

;; Memory allocation for ATmega328P, all byte addre sses

; Flash memory

;%0 Reset and interrupt vectors, RWW section
; $100 Initial values for variables

; $200 Start of compiler and user words

; $7000 Start of interpreter words, NRWW section
; $7FFF End of flash memory

RAM memory

$0 CPU and I/O registers
$100 Variables

$120 Free RAM memory

42

$160 Initial PAD
; $6F0 Top of data stack
; $700 Terminal input buffer
; $7F0 Top of return stack
; $800 Flash buffer 0
; $880 Flash buffer 1

$8FF End of RAM memory

.EQU RPP = $7F0 ;start of return stack (RPO)
.EQU TIBB = $700 ;terminal input buffer (TIB)
.EQU UPP = $100 ;start of user area (UPO)
.EQU SPP = $6F0 ;start of data stack (SPO)

;; Flash programmming

EQU BUF0O = $800
.EQU BUF1 = $880
.EQU NEWER = $11C ;flash pointer
.EQU OLDER = $11E ;flash pointer

; buffer pointer word format: dirty,page_addr,cell_

addr,buf?

5.1.1 Constants Used by Assembler

Constant Value Function

VER 2 Major release version

EXT 2 Minor extension

COMPO $40 Lexicon compile-only bit
IMEDD $80 Lexicon immediate bit

BASEE 16 Default radix for number conversion
BKSPP 8 Back space ASCII character

LF 10 Line feed ASCII character

CRR 13 Carriage return ASCII character
RETT $9508 Machine code ofet instruction
CALLL $940E Machine code ofall instruction
RPP $7F0 Top of return stack (RPO)

TIBB $700 Terminal input buffer (TIB)

UPP $100 Start of user area (UPQ)

SPP $6F0 Top of parameter stack (SP0)
BUFO $800 Address of first flash buffer
BUF1 $880 Address if second flash buffer
NEWER $11C Pointer to theNEWbuffer

OLDER $11E Pointer to theéOLDbuffer

Flash Memory Allocation of 328eForth in Bytes

Address Contents

$0 Reset and interrupt vectors, RWW section
$100 Initial values for variables

$200 Start of compiler and user commands

$7000 Start of interpreter commands, NRWW section

43

| $7FFF | End of flash memory

RAM Memory Allocation of 328eForth in Bytes

Address Contents

$0 CPU and /O registers
$100 Variables

$120 Free RAM memory
$160 Initial PAD for number conversions
$6F0 Top of parameter stack
$700 Terminal input buffer
$7F0 Top of return stack
$800 Flash buffer 0

$880 Flash buffer 1

$8FF End of RAM memory

;; Initialize assembly variable
SET _LINK = 0 ;init a null link

Compile a code definition header.

.MACRO CODE "LEX,NAME
.DW _LINK*2 ;:link pointer
SET _LINK = pc ;:link points to a name string
.DB @0,@1
.ENDM

: Colon header is identical to code header.

.MACRO COLON ;;LEX,NAME,LABEL
.DW _LINK*2 ;:link pointer
SET _LINK = pc ;:link points to a name string
.DB @0,@1
.ENDM

512 Headers

_LINK is an assembly variable which stored the name &dbress in the header of
the prior command. Itis initialize to 0, to sifynihat the first command is at the end
of the linked list of command records.

CODHs an assembly macro to build headers for primitgmmands in the

328eForth system. It is used in the following fash
CODE 4,"EMIT"

It expects two arguments: a one byte number andeadtring.

CODHmacro first allocates two bytes for a link fietdhd places the contents in
_LINK into this link field. Then, LINK is updated to point to the next location as
stored in a system variabjpe. Next, it assembles two arguments irDBstatement,

44

which builds up the name field of the command.

CODEmacro builds the header of a primitive commandollokving this header, the
assembly will assemble ATmega328P machine instmstio fill the code field of this
FORTH primitive command.

COLONbuilds the header of a compound command. Itasixthe same aSODE
because we are using the Subroutine Threading Madelthe token list in the code
field of a compound command consists of a listalf instructions, which are
machine instructions of ATmega328P.

The following figure shows the structures of prinetand compound commands.

Link Link
Bytel Length Bytel Length
Eyte3 Bytel Byte3 Bytel
Padding Null Last Byte Padding Null Last Byte

Token List as
Code Subrouitne
C'all Instructions

Eetmn EXIT

Primitive Comimand Compound Comimand

;; Macros defined by amForth

.DEF zerol =r2

.DEF zeroh =r3

.DEF temp4 =r14
.DEF temp5 =r15
.DEF temp0 =116
.DEF temp1 =r17
.DEF temp2 =118
.DEF temp3 =r19
.DEF temp6 =120
.DEF temp7 =r21

45

.DEF tosl =r24
.DEF tosh =r25

.macro loadtos
Id tosl, Y+
Id tosh, Y+

.endmacro

.macro savetos
st -Y, tosh
st -Y, tosl

.endmacro

.macro in_
if (@1 < $40)
in @0,@1
.else
Ids @0,@1
.endif
.endmacro

.macro out_
if (@0 < $40)
out @0,@1
.else
sts @0,@1
.endif
.endmacro

.macro readflashcell

Isl zI

rol zh

Ipm @O0, Z+

Ipm @1, Z+
.endmacro

5.1.3 Assembly Macros

The most important register names are defined &p@ef.inc provided by Atmel.

Among themyh:yl
to address flash memoryxh:xI

pair is used as parameter stack pointer,zéwml pair is used
pair can be used freely, and in many cases ark use

to hold the second item on the parameter staclGiwdme used with the top item on

parameter stack, but cachedash:tosl

register pair.

LOADTOS

Pop the external parameter stack and dogybpped item into
tosh:tosl register pair. It is used to implemd»ROP
commands, and many other commands consuming the/topems
on the parameter stack. It ugésyl register pair in
post-increment addressing mode

SAVETOS

Push the top item on the parameter stablchais cached in
tosh:tosl register pair, on the external parameter stackis |

used to implemerdUP command, and commands which pushes

new data on the parameter stack.

It ydeyl

register pair in the

174

46

pre-decrement addressing mode.

IN Read data from an input register. It examihesregister address
For a normal input register, it assemblesmaninstruction. For an
extended input register, it assemblddsa instruction.

ouT Write data to an output register. It exarsitiee register address.
For a normal output register, it assemblesatn instruction. For
an extended input register, it assemblsetsa instruction.

READFLAS | Assume thath:zl register pair contains a cell address pointing to
HCELL a location in flash memory. As the flash memorystrhe
addressed in bytes, this cell address is shiftiedhyel bit, and two
consecutive bytes from flash memory are read ingaiaof
destination register. This macro reveals thettzat flash memory
in ATmega328P is actually organized in bytes. @gunently, |
organized 328eForth using byte addresses to abodsfRAM and
flash memory. It is astatically much more pleagiman using
different addressing schemes for different typesiemory.

in_ andout_ macros take care of the strange I/O architectuAmega328P chip.
In the original design only 64 1/O registers wellecated, and usea andout
instructions to access them. The I/O space is namkmall, and had to be
extended to encompass 256 registers.

5.1.4 Variablesand Sartup Code

Flash memory location 0-$FF is allocated for atrgeetor, interrupt vector table and
interrupt service routines. The reset vector edfion O contains an address pointing
to the reset routinBTART.

Flash memory location $100-1FF, cell address $8aFdreserved to store initial
values of variables in the RAM memory starting &MRlocation $100. After
328eForth boots up, it copies 256 bytes from anflasmory array starting at $100 to
RAM memory array starting at $100. This way yon baild a turn-key system
with your application.

;; Main entry points and COLD start data

.CSEG
.ORG 0
JMP START

.ORG $80 ;byte address $100, copy to ram on boot,
;saved from ram for turnkey system

UZERO:
.DW HI*2 'BOOT
.DW 0 :reserved
.DW BASEE ;BASE
.DW 0 ;tmp
.DW 0 :SPAN
.DW 0 >IN
.DW 0 H#TIB

.DW TIBB ;TIB

47

.DW INTER*2;'EVAL

.DW 0 HLD

.DW LASTN ;CONTEXT pointer

.DW CTOP .CP

.DW DTOP :DP

.DW LASTN ;LAST

.DW $6F00 ;PTRO to BUFO

.DW $6F81 ;PTRI1 to BUF1
ULAST:

.ORG $3800 ;byte address $7000
START:

in_ r10, MCUSR

clr ril

clr zerol

clr zeroh

out ~ MCUSR, zerol
; init return stack pointer
Idi xl,low(RPP)

out SPLx
Idi xh,high(RPP)
out SPH,xh

; init parameter stack pointer
Idi yl,low(SPP)

Idi yh,high(SPP)

; jump to Forth starting word
jmp COLD

The first 32 bytes starting at location $100 aredusy system variables, as shown in
the following list:

Variable Address Function
'‘BOOT 100 Execution vector to start applicatiomooand.
102 Reserved

BASE 104 Radix base for numeric conversion.

tmp 106 Scratch pad.

HLD 108 Pointer to a buffer holding next digit foumeric
conversion.

SPAN 10A Number of characters received BXPECT

>IN 10C Input buffer character pointer used déxt interpreter.

#TIB 10E Number of characters in input buffer.

‘TIB 110 Address of Terminal Input Buffer.

'EVAL 112 Execution vector switching betwe@NTERPRETand
$COMPILE

CONTEXT | 114 Vocabulary array pointing to last name fiedéls
dictionary.

CP 116 Pointer to top of dictionary, the firsadable flash
memory location to compile new command

DP 118 Pointer to the first available RAM memimgation.

LAST 11A Pointer to name field of last commandlictionary.

NEW 11C Pointer to most recently used flash mgnbaiffer.

OLD 11E Pointer to the flash memory buffer notdusecently, to

48

| | be flushed back to flash memory |

The startup routin8 TARTIs located at the beginning of the bootloaderisedh

flash memory, at location $7000 (cell address $3804 first clears registerzerol,
zeroh , and the CPU status regisMCUSR It then initializes the return stack
pointer in theSP register, and the parameter stack pointgthiyl register pair. It
thus completes hardware initialization, and thenga toCOLDcommand which
initializes the 328eForth FORTH Virtual Machinedastarts running an application.
The default application in 328eForthH$, which simply sends out a sign-on message
and falls into the text interpret@UIT. The address ¢l is stored in memory
location name®BOOT at $100 (both in flash and in RAM memory). Thikleess

can be changed to point to an application commardturnkey system.

5.1.5 Device Dependent I/0

The only I/0O device used by 328eForth system is#r@l communication device
USARTO in ATmega328P chip.

;; Device dependent I/0

 PRX(—-cT|F)
Return input character and true, or a false if no input.

CODE 4,"?KEY"

QRX:

QKEY:
savetos
clr tosl
clr tosh

movw tosl,zerol
in_ xI,UCSROA
sbrs x1,7

ret

in_ tosl,UDRO
savetos

ser tosl

ser tosh

ret

; TXI(c--)
Send character c to the output device.

CODE 4,"EMIT"

EMIT:

TXSTO:
in_ xI,UCSROA
sbrs x1,5

rJMP TXSTO
out UDRO,tosl
loadtos

ret

; 10 ()

49

;Initialize the serial 1/0O devices.

; CODE 3,"11o"

STOIO:

Idi x1,$66 ;19200 baud

out UBRROL xI

clr X

out UBRROH xI

Idi x1,$18 ;enable TX and RX
out_ UCSROB,xI

Idi x1,6 ;8 data bits

out_ UCSROC, x|

RET

1o Initialize USARTO device. It writes $66 inttaud rate register pair
UBRROH:UBRROL to set up the baud rate to 9600 bautiwrites $18
into control register UCSROB to enable both trarenand receiver in
USARTO. It then write $6 into control register UREC to set up the
data format to 1 start bit, 8 data bits, no pafitgtop bit, and no flow
control.

?KEY | Examine the status register UCSROA to séeeife is a valid character in
the receiver. If a character is receiveEY reads the ASCII code of
the character in data register UDRO and pusheasti® parameter stack
It then pushes a true flag on the top. If no cti@ras received, it only
pushes a false flag on the parameter stack.

EMIT Send a character to the transmitter. It fivaits on the transmitter buffer
empty flag in UCSROA register. When the transmigeeady to
transmit, it pops the character off the parameterksand writes it into
the transmitter data register UDRO.

5.1.6 Kernd

doLIT command is used to build literal structures in poond commands. It
allows numbers to be pushed on the parameter stek the compound command is
executed.

:; The kernel

; doLIT (w--)
: Push an inline literal.

;. CODE COMPO+5,"doLIT"
DOLIT:

savetos

pop zh

pop zl

readflashcell tosl,tosh

ror zh

ror zZl

push zl

push zh

ret

50

; next --)
; Run time code for the single index loop.

; CODE COMPO+4,"next"

DONXT:
POP zh ;ret addr
POP zl
pop xh ;count
pop X
shiw xl, 1
brge NEXT1
adiw zl,1
push zl
push zh
ret
NEXT1:
push x| ;push count back
push xh
readflashcell xl,xh
push Xl
push xh
ret
next Build indexed loop structures in compound canch A loop starts

when the loop index is pushed on the return statihen it is executed,
it decrements this loop index on the return stadkresulting index is
not negative, jump back to repeat the loop. Ifrmulting index is
negative, pop the return stack to discard the inded exit the loop.

The literal structure and the indexed loop struetne show in the following figure:

51

LOOFP:

CALL doLIT
$xooex
CALL next
LOOF
Loop Structure Literal Structure

5.1.7 Flow Control

?branch andbranch commands are used to build control structured o
structures in compound commands. In the folloviiggre, an IF-ELSE-THEN
branch structure andBEGIN-WHILE-REPEAT loop structure are illustrated:

52

IF CALL ?branch
addrl
FELSE CALL branch
addr2
addrl:
THEN
addr2:

IF-FLSE-THEN
Eranch Structure

BEGIN
addrl:

WHILE CALL ?branch

acedr2

REPEAT | AL branch

addrl

addr2:

BEGIN-WHILE-REFEAT

Loop Structure

; ?branch (f--)
; Branch if flag is zero.

; CODE COMPO+7,"?branch”

QBRAN:
pop zh
pop zl
or tosl, tosh
loadtos
breq BRAN1
adiw zl,1
push zl
push zh
ret

; branch (--)

: Branch to an inline address.

;. CODE COMPO+6,"branch"

BRAN:
pop zh
pop zl

53

BRAN1:

readflashcell xI,xh

push
push
ret

x|
xh

. EXECUTE (b --)

; Execute the word at ca=b/2.
CODE 7,"EXECUTE"
EXECU:
asr tosh :b/2
ror tosl
push tosl
push tosh
loadtos
ret
; EXIT--)
; Terminate current colon word.
CODE 4,"EXIT"
EXIT:
pop xh
pop X
ret

?branch Build a conditional branch in compound iw@nds.

branch Build an unconditional branch in compounche@nds.

EXECUTE | Jump to an execution address on the top of thevmes stack. As
the execution address is a byte address, it musbineerted to a cell
address for jumping. The cell address is pushetti@mneturn stack
and a RET instruction is executed to cause the jump

EXIT Terminate a compound command. Since it is exe@geatall

EXIT command, the return address must be popped ofethen
stack and thenet instruction is executed. It is retained for
compatibility. Thecall EXIT command can be simply replaceq
by aret machine instruction.

5.1.8 RAM Memory Access

ATmega328P has separated RAM memory and flash memawvo different
memories need two separate sets of command tarehdrite them.

;b (wa-)
; Pop the data stack to memory.

CODE 1,
STORE:

movw zl, tosl

loadtos

std Z+1, tosh

std Z+0, tosl

54

loadtos

RET
;@ (a-w)
; Push memory location to the data stack.
CODE 1,"@"
AT:
movw zl, tosl
Id tosl, z+
Id tosh, z+
RET
: C! (cb-)
Pop the data stack to byte memory.
CODE 2,"Cl"
CSTOR:
movw zl, tosl
loadtos
st Z, tosl
loadtos
RET
, C@ (b-c)
; Push byte memory location to the data stack.
CODE 2"C@"
CAT:
movw zl, tosl
clr tosh
Id tosl, Z
RET
@ Read a 16-bit data stored in the address onftihge @arameter stack.
The address is a byte address pointing to a lotatii®@ AM meory.
! Store the 16-bit data as the second item ompeter stack into the
address on top of the parameter stack.
C@ Read an 8-bit data stored in the address ooftithg parameter stack.
C! Store an 8-bit data as the second item on petearstack into the address
on top of the parameter stack.

These 4 memory commands access data stored in Ré&kbny. Since in
ATmega328P, the CPU registers and I/O registersamped to the RAM memory
space from 0 to $FF, we can control ATmega328Radntively using these
commands. This is the greatest advantage 328eRastbver the Arduino operating
system which is a Compile-Load-Test no-interaciystem.

To access flash memory, we have the correspon@ny , andiC@ commands.
They are discussed in a later section.

519 Return Sack

328eForth system uses the return stack for twoifspparposes: to save addresses

55

while recursing through a token list, and to stheeloop index for & OR-NEXT
loop.

Return stack is used by the FORTH Virtual Machmedve return addresses to be
processed later. It is also a convenient plastdiee data temporarily. The return
stack can thus be considered as an extension patiaeneter stack. However, one
must be very careful in using the return stackdéomporary storage. The data
pushed on the return stack must be popped off befbr is executed. Otherwise,
ret will get the wrong address to return to, and tystesn generally will crash.
Since>R andR> are very dangerous to use, they are designedrmapile-only
commands and you can only use them in the compitiade.

In setting up a looFzORcompiles>R, which pushes the loop index from the
parameter stack to the return stack. Insidd=DR-NEXTloop, the running index
can be recalled bR@ NEXTcompilescall next with an address aftéiOR
whennext is executed, it decrements the loop index ondpeof the return stack.
If the index becomes negative, the loop is terneidadtherwisenext jumps back to
the command aftdfOR

; R> (~-w)
; Pop the return stack to the data stack.
CODE COMPO+2,"R>"
RFROM:
savetos
pop xh
pop X
pop tosh
pop tosl
push xl
push xh
RET
, R@ (-w)
; Copy top of return stack to the data stack.
CODE 2,'R@"
RAT:
savetos
pop xh
pop X
pop tosh
pop tosl
push tosl
push tosh
push xl
push xh
RET
; >R (w--)
; Push the data stack to the return stack.
CODE COMPO+2,">R"
TOR:

56

pop xh

pop x|

push tosl

push tosh

push xl

push xh

loadtos

RET
>R Pop a number off the parameter stack and pusbaghe return stack.
R> Pop a number off the return stack and pushastihe parameter stack.

R@ Copy the top item on the return stack and pustoesthe parameter stack
without disturbing the return stack

5.1.10 Parameter Sack

The parameter stack is the central location whitreuenerical data are processed,
and where parameters are passed from one commanotteer. The stack items
have to be arranged properly so that they cantbieved in the Last-In-First-Out
(LIFO) manner. When stack items are out of orthexy can be rearranged by the
stack wordDUR SWAPOVERandDROP There are other stack words useful in
manipulating stack items, but these four are camsiito be the minimum set.

, SP@ (-—-a)

; Push the current data stack pointer.

;. CODE 3,"SP@"
SPAT:
savetos
movw tosl, yl
RET

; SP!(a--)
; Set the data stack pointer.

; CODE 3,'spP!"
SPSTO:
movw vl, tosl
loadtos
RET

; DROR w --)
; Discard top stack item.

CODE 4,"DROP"
DROP:

loadtos

RET

; DUP (w--ww)
; Duplicate the top stack item.

CODE 3,"DUpP"

57

DUPP:
savetos
RET

; SWAR w1l w2 --w2wl)
; Exchange top two stack items.

CODE 4,"SWAP"

SWAPP:
movw Xl, tosl
Id tosl,Y+
Id tosh,Y+
st -Y, xh
st =Y, xl
RET

; OVER w1l w2 --wlw2wl)
; Copy second stack item to top.

CODE 4,"OVER"

OVER:
savetos
Idd tosl, Y+2
Idd tosh, Y+3
RET
SP! Initialize the parameter stack.
SP@ Return the depth of parameter stack.
DROP Pop the parameter stack discards the topatein
DUP Duplicate the top item and pushes it on thaipater stack.
SWAP Exchange the two two item on the parameteksta
OVER Duplicates the second item and pushes it epénameter stack.
5.1.11 Logic
The only primitive command which cares about lagiebranch . It tests the top

item on the stack. Ifitis zerBbranch will branch to the following address. If it
is not zero?branch will ignore the address and execute the commated tife
branch address. Thus we distinguish two logiceslaero fofalse and non-zero
fortrue . Numbers used this way are called logic flagsciiuan be eithdrue
orfalse . Logic flags thus cause conditional branchingantrol structures.

; 0< (n--1t)
; Return true if n is negative.

CODE 2,"0<"
ZLESS:

tst tosh

movw tosl, zerol

brge ZLESS1

sbiw tosl,1
ZLESS1:

58

RET

; AND (ww--w)

;. Bitwise AND.
CODE 3,"AND"
ANDD:
Id xl, Y+
Id xh, Y+
and tosl, xl
and tosh, xh
RET

i OR (ww--w)
;. Bitwise inclusive OR.

CODE

ORR:
Id
Id
or
or
RET

2,"OR"

xl, Y+
xh, Y+
tosl, xl
tosh, xh

; XOR (ww --w)
;. Bitwise exclusive OR.

CODE 3,"XOR"
XORR:
Id xl, Y+
Id xh, Y+
eor tosl, xl
eor tosh, xh
RET

; UM+ (uu--udsum)

; Add two unsigned single numbers and return a doub le sum.
CODE 3,"UM+"
UPLUS:
Id xl, Y+
Id xh, Y+
add tosl, xl
adc tosh, xh
savetos
clr tosh
clr tosl
rol tosl
RET
0< Examine the top item on the parameter stackdoregativeness. Ifitis
negative 0< will return a -1 for true. If itis O or positiy@< will return a
0 for false.
AND Remove top two items on the parameter stackpasthes their bitwise
logic AND results on the parameter stack.
OR Remove top two items on the parameter stackpasles their bitwise

59

logic OR results on the parameter stack.

XOR Remove top two items on the parameter stadkpaishes their bitwise
logic exclusiveOR results on the parameter stack.

UM+ Add top two unsigned number on the data staxckraplaces them with the
unsigned sum of these two numbers and a carrymaoftthe sum.
FORTH does not have access to the carry flag inégag28P CPU, and
UM+preserves the carry flag to be used in doublgertarithmetic
operations. In 328eForth, most arithmetic commamedscoded in

1%

]

assembly antUM+is not used often.

5.1.12 System Variables

In 328eForth, all variables used by the systenmaed together and are

called system variables. They are allocated i&IRnemory array starting from
location $100. They are all initialized by copyiagable of initial values stored in
flash memory starting from location $100.

;; System and user variables

; doVAR (--a)
: Run time routine for VARIABLE and CREATE.

;. CODE COMPO+5,"doVAR"
DOVAR:

savetos

pop zh

pop zl

readflashcell tosl,tosh

RET

; 'BOOT (--a)
; Storage of application address.

COLON 5,"BOOT"

TBOOT:
RCALL DOVAR
.DW UPP

; BASH --a)

; Storage of the radix base for numeric 1/O.

COLON 4,"BASE"
BASE:

RCALL DOVAR

.DW UPP+4

; tmp (--a)
;A temporary storage location used in parse and fi nd.

COLON 3,"TMP"

TEMP:
RCALL DOVAR
.DW UPP+6

60

; SPAN --a)
; Hold character count received by EXPECT.

COLON 4,"SPAN"
SPAN:

RCALL DOVAR

.DW UPP+8

; >IN (--a)

; Hold the character pointer while parsing input st

COLON 3,">IN"
INN:

RCALL DOVAR

.DW UPP+10

; #TIR --a)
;. Holdthecurrentcountinandaddressoftheterm

COLON 4,"#TIB"
NTIB:

RCALL DOVAR

.DW UPP+12

; TIH-a)

: Holdthecurrentcountinandaddressoftheterm

COLON 4,"TIB"
TTIB:

RCALL DOVAR

.DW UPP+14

; 'EVAL (--a)
: Execution vector of EVAL.

COLON 5,"EVAL"
TEVAL:

RCALL DOVAR

.DW UPP+16

; HLD (-a)
; Hold a pointer in building a numeric output strin

COLON 3,"HLD"
HLD:

RCALL DOVAR

.DW UPP+18

; CONTEXT (--a)
;A areato specify vocabulary search order.

COLON 7,"CONTEXT"
CNTXT:

RCALL DOVAR

.DW UPP+20

; CP (-a)
; Point to the top of the code dictionary.

ream.

inalinputbuffer.

inalinputbuffer.

61

COLON 2,"CP"
CPP:

RCALL DOVAR

.DW UPP+22

; DP (-a)
Point to the free RAM space.

COLON 2,"DP"
DPP:

RCALL DOVAR

.DW UPP+24

; LAST --a)
; Point to the last name in the name dictionary.
COLON 4,"LAST"
LAST:

RCALL DOVAR

.DW UPP+26

doVAR | Fetch a value stored after tball doVAR instruction and pushes it on the
parameter stack. It returns to its caller immesyat call doVAR
instruction and the value after it forms the caeédfin all variable
commands, with the value pointing to a locatioR&M memory.

Variable Address Function
'‘BOOT 100 Execution vector to start applicatiomooand.
102 Reserved

BASE 104 Radix base for numeric conversion.

tmp 106 Scratch pad.

HLD 108 Pointer to a buffer holding next digit foumeric
conversion.

SPAN 10A Number of characters received BXPECT

>IN 10C Input buffer character pointer used éxt interpreter.

#TIB 10E Number of characters in input buffer.

'TIB 110 Address of Terminal Input Buffer.

'EVAL 112 Execution vector switching betwe8INTERPRETand
$COMPILE

CONTEXT | 114 Vocabulary array pointing to last name fiedls
dictionary.

CP 116 Pointer to top of dictionary, the firsadable flash
memory location to compile new command

DP 118 Pointer to the first available RAM memimgation.

LAST 11A Pointer to name field of last commandliationary.

NEW 11C Pointer to most recently used flash mgrbaiffer.

OLD 11E Pointer to the flash memory buffer notdisecently, to
be flushed back to flash memory

62

5.2 Common Functions
5.21 Arithmetic

This group of FORTH commands are commonly usedriting FORTH applications.
In the original eForth Model they are coded as coummal commands to enhance the
portability of eForth. Here in 328eForth implenaidns, they are coded in
assembly language to increase the execute speed.

:; Common functions

;2% (n--n)
; Multiply tos by cell size in bytes.

COLON 2,"2*"
CELLS:

Isl tosl

rol tosh

ret

;21 (n--n)
; Divide tos by cell size in bytes.

COLON 2,72/"
TWOSL:

asr tosh

ror tosl

ret

; ALIGNED (b --a)
; Align address to the cell boundary.

;. COLON 7,"ALIGNED"
ALGND:

adiw tosl,1

andi tosl,254

ret

; BL (-32)
: Return 32, the blank character.

COLON 2,"BL"

BLANK:
savetos
Idi tosl,32
clr tosh

ret

; PDURwW--ww|0)
; Dup tos if its is not zero.

COLON 4,"?DUP"
QDUP:
movtempO, tosl
or tempO, tosh
breq QDUP1
savetos

63

QDUP1:

RET

2* Shift the top item on the parameter stack IgftLibit. Multiply by 2.

2/ Shift the top item on the parameter stack right bit. Divide by 2.

ALIGNED | Modify the byte address on top of the parametaiksta that it points to
the next word boundary.

BL Push a blank or space character (ASCII 32) on patermstack. BL is
often used in parsing out space delimited strings.

?DUP Duplicate the top item on the parameter Sfatks non-zero.

; ROT (wlw2w3--w2w3wl)
; Rot 3rd item to top.

COLON 3,"ROT"

ROT:

movw tempO, tosl

Id temp2, Y+

Id temp3, Y+

loadtos

st -Y, temp3

st -Y, temp2

st -Y, templ

st -Y, temp0
RET

; 2DROP (ww--)
;. Discard two items on stack.

COLON 5,"2DROP"
DDROP:

loadtos

loadtos

ret

; 2DUR w1l w2 -- wlw2wlw2)
; Duplicate top two items.

COLON 4,"2DUP"

DDUP:
RCALL OVER
RJIMP OVER

;+ (ww--sum)
; Add top two items.

COLON 1,"+"
PLUS:

Id tempO, Y+

Id templ, Y+

addtosl, temp0
adctosh, templ
RET

64

; NOT (w--w)
; One's complement of tos.

COLON 6,"INVERT"
INVER:
comtosl
comtosh
ret

ROT Rotate the top three items on the parametek.starhe third item is
pulled out to the top. The second item is pustegndto the third item,
and the top item is pushed down to be the secend itROTis unique in
that it accesses the third item on the paramedekst All other stack
commands can only access one or two stack itenmsFORTH
programming, it is generally accepted that one khoat try to access
stack items deeper than the third item. When yaueho access deeper
into the data stack, it is a good time to re-ev&yaur algorithm. Most
often, you can avoid this situation by factoringiycode into smaller parts
which do not reach so deep into the parameter stack

2DROP | Discard the top two items on the paramesekst

2DUP Duplicate the top two items on the parameterks

+ Add the top item on the parameter to the sectamd,iand then pops the
top item off the parameter stack. It is recodedssembly for speed.

INVERT | Invert each individual bit in the top item on ther@meter stack. Itis
often called 1's complement operation.

ROTis unique in that it accesses the third item @end&ita stack. All other stack
operators can only access one or two stack itemsForth programming, it is
generally accepted that one should not try to acsexk items deeper than the third
item. When you have to access deeper into thestlatd, it is a good time to
re-evaluate your algorithm. Most often, you canidvhis situation by factoring
your code into smaller parts which do not reacdesp.

; NEGATE (n---n)
; Two's complement of tos.

COLON 6,"NEGATE"
NEGAT:

RCALL INVER

adiw tosl,1

ret

; DNEGATE (d ---d)
; Two's complement of top double.

COLON 7,"DNEGATE"

DNEGA:
RCALL INVER
RCALL TOR

RCALL INVER
RCALL DOLIT
.DW1

RCALL UPLUS

65

RCALL RFROM
RJIMP PLUS

;- (nln2--nl-n2)
;. Subtraction.

COLON 1,*-"
SUBB:
Id tempO, Y+
Id templ, Y+
subtempO, tosl
sbctempl, tosh
movw tosl, temp0

ret

; ABS (n--n)
: Return the absolute value of n.

COLON 3,"ABS"
ABSS:

RCALL DUPP

RCALL ZLESS

RCALL QBRAN

.DWABS1

RIMP NEGAT
ABS1:

RET

NEGATE | Negate the top item on the parameter statiks often called 2's
complement operation.

DNEGATE | Negate the top two items on the parameter stack,3@sbit double
integer.

- Subtract the top item on the parameter stack ttwrsecond item, and
then pops the top item off the parameter stack.

ABS Replace the top item on the parameter stadk itgitabsolute value.

5.2.2 Comparison

The primitive comparison commands in 328eForth?r@anch andO<.
However,?branch is at such a low level that it is not used in coonud
commands. ?branch is secretly compiled into compound commands$Hoyas an
address literal. For all intentions and purposescan considdF the equivalent
of ?branch . WhenlF is encountered, the top item on the parametek sac
considered a logic flag. Ifitisue (non-zero), the execution continues until
ELSE, then jump tarHEN or toTHENdirectly if there is n&LSE clause.

The following logic words are constructed using ifre. ELSE... THEN structure
with 0< andXOR XORis used as a "not equal” operator, because toihéwnvo
items on the parameter stack are not equalX@Roperator will return a non-zero
number, which is considered to toee .

66

;= (ww--1t)
; Return true if top two are equal.

COLON 1,'="
EQUAL:
RCALL XORR
RCALL QBRAN
.DW EQU1
RCALL DOLIT
.DW 0
RET
EQU1:
RCALL DOLIT
.DW -1
RET
; U< (uu--t)

; Unsigned compare of top two items.

COLON 2,"U<"

ULESS:
RCALL
RCALL
RCALL
RCALL
.DW
RCALL
RCALL
RJIMP

ULES1:
RCALL
RJIMP

DDUP
XORR
ZLESS
QBRAN
ULES1
SWAPP
DROP
ZLESS

SuUBB
ZLESS

;< (nln2--1t)
; Signed compare of top two items.

COLON

LESS:
RCALL
RCALL
RCALL
RCALL
.DW
RCALL
RJIMP

LESS1:
RCALL
RJIMP

1<

DDUP
XORR
ZLESS
QBRAN

LESS1
DROP
ZLESS

SuUBB
ZLESS

= Compare top two items on the parameter stackthelf are equal, replace
these two items with tiue flag; otherwise, replace them witladse
flag.

U< Compare two unsigned numbers on the top of #nampeter stack.
top item is less than the second item in unsigredparison, replace thes
two items with a@rue flag; otherwise, replace them witHase
This command is very important, especially in cormgpaddresses, as w¢

11°)

D

assume that the addresses are unsigned numbetisgpoanunique

to determine whether one address is higher or |olaaT the other.
< for address comparison had been the single cdusary failure

328eForth to a bigger chip.

memory locations. The arithmetic comparison operatcannot be used

Using
s in the

annals of FORTH. We don not have this problemTimaga328P since i
has only 32 KB of flash memory. However, watchwhen you move

< Compare two signed numbers on the top of thenpetex stack.

If the toy

item is less than the second item in signed corepayireplace these two
items with arue flag; otherwise, replace them witliadse flag.

; MAX (nn--n)
; Return the greater of two top stack items.

COLON 3,"MAX"
MAX:

RCALL DDUP

RCALL LESS

RCALL QBRAN

.DW MAX1

RCALL SWAPP
MAX1.:

RJIMP DROP

i MIN(nn--n)
; Return the smaller of top two stack items.

COLON 3,"MIN"
MIN:

RCALL DDUP

RCALL SWAPP

RCALL LESS

RCALL QBRAN

.DW MIN1

RCALL SWAPP
MIN1:

RJIMP DROP

; WITHIN (uuluh--1)
; Returntrueifuiswithintherange ofulanduh .(ul<=u<uh)

COLON 6,"WITHIN"
WITHI:
RCALL OVER
RCALL SUBB
RCALL TOR
RCALL SUBB
RCALL RFROM
RJIMP ULESS

MAX Retain the larger of the top two items on tlagmeter stack. B
numbers are assumed to be signed integers.

oth

MIN Retain the smaller of the top two items on ffagameter stack.

Both

68

numbers are assumed to be signed integers.

WITHIN | Check whether the third item on the parameter s&wlthin the range as
specified by the top two numbers on the paraméseks The range is
inclusive as to the lower limit and exclusive te tipper limit. If the

third item is within range, tue flag is returned on the parameter stag
replacing all three items.
numbers are assumed to be signed integers.

Otherwisdatse

flag is returned. All

5.2.3 Divide

UM/MOandUM* are the most complicated and comprehensive divisial

multiplication commands.

operators can be derived easily from them.

programming that one solves the most difficult peabfirst, and all other problems

are solved by themselves.

;; Divide

; UM/MOD (udludh un --uruq)
; Unsigneddivide ofadouble by asingle. Returnm

COLON 6,"UM/MOD"
UMMOD:
movw temp4, tosl

Id temp2, Y+
Id temp3, Y+
Id tempO, Y+

Id templ, Y+

;; unsigned 32/16 -> 16r16 divide

; setloop counter

Iditemp6,$10
UMMOD1:

; shift left, saving high bit

clrtemp?7

IsltempO

roltempl

roltemp2

roltemp3

roltemp7

; try subtracting divisor

cp temp2, temp4

cpctemp3, temp5

cpctemp?,zerol

brcs UMMOD3
UMMOD2:

; dividend is large enough

; do the subtraction for real

: and set lowest bit

inctempO

subtemp2, temp4

sbctemp3, temp5
UMMOD3:

dec temp6

brne UMMOD1
UMMODA4:

odandquotient.

69

k!

Once they are codedpytakér division and multiplication
ltdesen a tradition in FORTH

; put remainder on stack

st -Y,temp3

st -Y,temp2

; put quotient on stack

movw tosl, tempO
ret

; MIMOD (dn--rq)
; Signedflooreddivideofdoublebysingle.Return

COLON 5,"M/MOD"
MSMOD:
RCALL DUPP
RCALL ZLESS
RCALL DUPP
RCALL TOR
RCALL QBRAN
.DWMMOD1
RCALL NEGAT
RCALL TOR
RCALL DNEGA
RCALL RFROM
MMOD1:
RCALL TOR
RCALL DUPP
RCALL ZLESS
RCALL QBRAN
.DWMMOD2
RCALL RAT
RCALL PLUS
MMOD2:
RCALL RFROM
RCALL UMMOD
RCALL RFROM
RCALL QBRAN
.DWMMOD3
RCALL SWAPP
RCALL NEGAT
RCALL SWAPP
MMOD3:
RET

; IMOOnn--rq)
; Signed divide. Return mod and quotient.

COLON 4,"/MOD"
SLMOD:

RCALL
RCALL
RCALL
RIMP

OVER
ZLESS
SWAPP
MSMOD

; MOD (nn--r)
; Signed divide. Return mod only.

COLON 3,"MOD"
MODD:
RCALL SLMOD

modandquotient.

70

RJIMP DROP

;1 (nn--q)
; Signed divide. Return quotient only.

COLON 1,
SLASH:

RCALL SLMOD

RCALL SWAPP

RJIMP DROP

UM/MOD | Divide an unsigned double integer by an unsignedlsiinteger. It
returns the unsigned remainder and unsigned quatiethe parameter
stack. Itis coded in assembly and the doublagentdividend is stored
in 4 registers temp0 to temp3. Division is carmed similar to long
hand division.

M/MOD | Divide a signed double integer by a signed singfieger. It returns the
signed remainder and signed quotient on the pamrattck. The
signed division is floored towards negative infynit

/MOD Divide a signed single integer by a signeeger. It replaces these tw
items with the signed remainder and quotient.

MOD Divide a signed single integer by a signeegatr. It replaces these tw
items with the signed remainder only.

/ Divide a signed single integer by a signed iateg It replaces these tw
items with the signed quotient only.

5.24 Multiply

;; Multiply

; UM* (uu--ud)
; Unsigned multiply. Return double product.

COLON 3,"UM*"
UMSTA:
movw tempO, tosl
loadtos
; low bytes
multosl,temp0
movw zl, r0
clrtemp?2
clrtemp3
; middle bytes
multosh, temp0
addzh, rO
adctemp2, r1
adctemp3, zeroh
mul tosl, templ
add zh, r0
adc temp2, rl
adc temp3, zeroh
mul tosh, templ
add temp2, r0

71

adc

temp3, rl

movw tosl, zl
savetos
movw tosl, temp2

ret

;* (nn-n)
; Signed multiply. Return single product.

COLON 1,™"

STAR:

RCALL MSTAR
RJIMP DROP

; M*

(nn--d)

; Signed multiply. Return double product.

COLON 2,"M*"

MSTAR:

RCALL DDUP
RCALL XORR
RCALL ZLESS
RCALL TOR
RCALL ABSS
RCALL SWAPP
RCALL ABSS
RCALL UMSTA
RCALL RFROM
RCALL QBRAN
.DWMSTA1L
RCALL DNEGA

MSTA1L:
RET

; *MOD (n1ln2n3--rq)

; Multiply n1 and n2, then divide by n3. Return mod and quotient.
COLON 5,*/MOD"

SSMOD:
RCALL TOR

RCALL MSTAR
RCALL RFROM
RJIMP MSMOD

;¥ (n1ln2n3--q)
; Multiply n1 by n2, then divide by n3. Return quot ient only.

COLON 2,/

STASL:

RCALL SSMOD
RCALL SWAPP
RJIMP DROP

UM*

Multiply two unsigned single integers and rets the unsigned double
integer product on the parameter stackkM* command takes advantage

72

the multiply machine instructions in ATmega328Ppchi The multiply
instructions in ATmega328P operate on 8 bit valaesd, the 16 bit product
have to be added properly to form a 32 bit doufileger product.

UJ

* Multiply two signed single integers and retuths signed single integer
product on the parameter stack.
M* Multiply two signed single integers and retuthe signed double integer

product on the parameter stack.

*IMOD | Multiply the signed integensl andn2, and then divides the double integer
product byn3. Itin fact is ratioinghl byn2/n3 . It returns both the
remainder and the quotient.

*/ Multiply the signed integensl andn2, and then divides the double integer
product byn3. It returns only the quotient.

FORTH is very close to assembly languages in thggnerally only handles integer
numbers. There are floating point extensions inymaore sophisticated FORTH
systems, but they are more exceptions than rul€ke reason why FORTH has
traditionally been an integer language is thatgets are handled faster and more
efficiently in the computers, and most technicalgbems can be solved satisfactorily
only using integers. A 16-bit integer has the ayitarange of 110 dB which is far
more than enough for most engineering problems.e prhcision of a 16-bit integer
representation is limited to one part in 65535,cltgould be inadequate for small
numbers. However, the precision can be greatlyongd by scaling; i.e., taking the
ratio of two integers. It was demonstrated thabpany other irrational numbers,
can be represented accurately to 1 part in 200000y a ratio of two 16-bit
integers.

The scaling command#MOD and*/ are useful in scaling numbet by the ratio of
n2/n3 . Whenn2 andn3 are properly chosen, the scaling commands caemes
precision similar to the floating point operatiaisa much higher speed. Notice also
that in these scaling operations, the intermediiedduct ofnl andn2 is a double
precision integer so that the precision of scaingaintained.

5.25 Miscelaneous

:» Miscellaneous

; >CHAR (c--c¢)
Filter non-printing characters.

; COLON 5,">CHAR"

TCHAR:
RCALL DUPP
RCALL BLANK
RCALL DOLIT
.DW $7F
RCALL WITHI
RCALL QBRAN
.DW TCHAR1
RET

TCHARL:
RCALL DROP

73

RCALL DOLIT
DW
RET

; DEPTH (--n)
; Return the depth of the data stack.

COLON 5,"DEPTH"
DEPTH:
RCALL SPAT
RCALL DOLIT
.DW SPP-2
RCALL SWAPP
RCALL SUBB
RJIMP TWOSL

; PICK ... +n--...w)
; Copy the nth stack item to tos.

COLON 4,"PICK"
PICK:

ADIW TOSL,1

RCALL CELLS

RCALL SPAT
RCALL PLUS
RIMP AT

>CHAR | Convert a non-printable character to a harmlesgnsedre

character(ASCII 95). As 328eForth is designedaimmunicate with a
host computer through a serial 1/0O device, it ipamant that 328eForth
will not emit control characters to the host aneréby causes unexpected
behavior on the host computer>CHARthus filters the characters before
they are sent out ByMIT.

DEPTH | Push the number of items currently on the paranstéek to the top of the
stack.

PICK Take a numben off the parameter stack and replaces it with ttreitem
on the parameter stack. The numbes 0-based; i.e., the top item is
number 0, the next item is number 1, etc. TheeePICK is
equivalent tdUR andl PICK is equivalent t®©VER

5.2.6 Memory Access

A memory array is generally specified by its stagtaddress and its length in bytes.
In a count string, the first byte is a count byeecifying the number of bytes in the
following string. String literals in compound coranmds and the name strings in the
headers of command records are all representedibyt strings. Following
commands are useful in accessing memory arraystangds.

;; Memory access

; +l (na--)
:Add n to the contents at address a.

74

COLON 2,"+I"
PSTOR:

RCALL SWAPP
RCALL OVER
RCALL AT
RCALL PLUS
RCALL SWAPP
RJIMP STORE

; COUNT (b--b+n)
; Return count byte of a string and add 1 to byte a

COLON 5,"COUNT"
COUNT:

ddress.

movw
Id
movw

zl, tosl
tempO, z+
tosl, zl

savetos

mov tosl, tempO
clr tosh

ret

; ICOUNT (b--b+n)
; Return count byte of a string and add 1 to byte a

COLON 6,"ICOUNT"
ICOUNT:

RCALL DUPP

adiw tosl,1

RCALL SWAPP

RIMP ICAT

; HERE --a)
; Return the top of the code dictionary.

COLON 4,"HERE"
HEREE:

RCALL DPP

RJIMP AT

; PAD (--a)
: Returnthe address of the text buffer above the ¢

COLON 3,"PAD"
PAD:

RCALL HEREE

RCALL DOLIT

ddress.

ode dictionary.

.DW
RIMP

$40
PLUS

+!

Add the second item on the parameter stachdaell addressed by the
top item on the stack.

COUNT

Fetch one byte from RAM memory pointed to by thdrads on the top of

the parameter stack. This address is incrementdd énd the byte just

read is pushed on the stackCOUNTs designed to get the count byte g

75

—

the beginning of a counted string, and returnsatigress of the first byte
in the string and the length of this string. Howee\t is often used in a
loop to read consecutive bytes in a byte array.

ICOUNT

Fetch one byte from flash memory pointed to byatidress on the top of
the parameter stack. This address is incrementdd énd the byte just
read is pushed on the stacHCOUNTIs used to access counted strings
stored in flash memory.

D

HERE

Push the address of the first free locatiothé RAM memory. FORTH
text interpreter stores here a string parsed otlteofTerminal Input Buffer
and then searches the dictionary for a commandthigname.

PAD

Push on the parameter stack the address téxhéuffer where numbers
to be output are constructed and text stringstared temporarily. Itis

64 bytes abovelERE

; TIB(--a)
; Return the address of the terminal input buffer.

COLON 3,"TIB"

TIB:
RCALL
ADIW
RIMP

NTIB
TOSL,2
AT

: @EXECUTE (a--)
;. Execute vector stored in address a.

COLON 8,"@EXECUTE"

ATEXE:
RCALL
RCALL
RCALL
.DW
RCALL

EXEL:RET

; CMOVE

AT
QDUP ;?address or zero
QBRAN
EXE1
EXECU :execute if non-zero
;do nothing if zero

(blb2u--)

; Copy u bytes from b1l to b2.

COLON 5,"CMOVE"

CMOVE:
RCALL
RJIMP

CMOV1:
RCALL
RCALL
RCALL
RCALL
RCALL
ADIW

CMovz:
RCALL
.DW
RJIMP

TOR
CMOVv2

TOR
COUNT
RAT
CSTOR
RFROM
TOSL,1

DONXT
CMOVv1
DDROP

76

; UPPER

; Change character to upper case

; COLON

UPPER:
RCALL
RCALL
.DW
RCALL
.DW
RCALL
RCALL
.DW
RCALL
.DW
RCALL

UPPER1:
RET

(c--c)

5,"UPPER"

DUPP
DOLIT
$61
DOLIT
$7B
WITHI
QBRAN
UPPER1
DOLIT
$5F
ANDD

; FIL(buc--)
; Fill u bytes of character c to area beginning at b.

COLON 4,"FILL"

FILL:

RCALL SWAPP
RCALL TOR
RCALL SWAPP
RIJMP FILL2

FILLZ:

RCALL DDuUP
RCALL CSTOR
ADIW TOSL,1

FILL2:

RCALL DONXT
DW FILL1
RIMP DDROP

TIB Push the address of the Terminal Input Buffer @ghirameter stack
Terminal Input Buffer stores a line of text frometkerial 1/0O input
device. FORTH text interpreter then processesterprets this line
of text.

@EXECUTE| Fetch a code field address of a command whictoigdtin the
address on the top of the parameter stack, andsjtionipto execute
this command. It is used extensively to execut#ored commands
stored in RAM memory. The behavior of a vectorechmand can
be changed dynamically at the run time.

CMOVE Copy a byte array from one location to aeoiin RAM memory.
The top three item on the parameter stack aredimes address, the
destination address and the number of bytes topied.

UPPER Convert the ASCII character on the top effarameter stack to an
upper case character. This command is used teecomput text
string to an upper case string so that the tegtjmeter is now case
insensitive.

FILL Fill a memory array with the same byte. Tbp three items on the

77

parameter stack are the address of the arrayetigghl of the array in
bytes, and the byte value to be filled into thimgr

5.3 Input Output
5.3.1 Numeric Output

FORTH is interesting in its special capabilitiehendling numbers across a
man-machine interface. It recognizes that machameshumans prefer very
different representations of numbers. Machinefepi@nary representation, but
humans prefer decimal Arabic representation. Hewnelepending on
circumstances, a human may want numbers to besemesl in other radices, like
hexadecimal, octal, and sometimes binary.

FORTH solves this problem of internal (machine)susrexternal (human) number
representations by insisting that all numbers epeasented in binary form in CPU
and memory. Only when numbers are imported or gggdor human consumption
are they converted to external ASCII representatiorhe radix of the external
representation is stored in system vari@®SE You can select any reasonable
radix inBASE, up to 72, limited by available printable charaste the ASCII
character set.

The output number string is built below tA&Dbuffer in RAM memory. The least
significant digit is extracted from the integertbie top of the parameter stack by
dividing it by the current radix iIBASE The digit thus extracted is added to the
output string backwards froPADto the low memory. The conversion is terminated
when the integer is divided to zero. The addresslength of the number string are
made available by> for outputting.

An output number conversion is initiated % and terminated b#>. Between
them,# converts one digit at a tim#S converts all the digits, whildOLDandSIGN
inserts special characters into the string undesttaction. This set of commands is
very versatile and can handle many different outpuhats.

;. Numeric output, single precision

; DIGIT (u--c)
; Convert digit u to a character.

; COLON 5,"DIGIT"

DIGIT:
RCALL DOLIT
.DW 9
RCALL OVER
RCALL LESS
RCALL DOLIT
.DW 7
RCALL ANDD
RCALL PLUS

RCALL DOLIT

78

.DW
RJIMP

IOI
PLUS

; EXTRACT (nbase--nc)
; Extract the least significant digit from n.

; COLON

EXTRC:
RCALL
.DW
RCALL
RCALL
RCALL
RJIMP

y<# ()

7,"EXTRACT"

DOLIT

0
SWAPP
UMMOD
SWAPP
DIGIT

; Initiate the numeric output process.

COLON 2,"<#"

BDIGS:
RCALL
RCALL
RJIMP

; HOLO(¢c --)

PAD
HLD
STORE

; Insert a character into the numeric output string

COLON 4,"HOLD"

HOLD:

RCALL HLD
RCALL AT
SBIW TOSL,1
RCALL DUPP
RCALL HLD
RCALL STORE
RIMP CSTOR

DIGIT Convert an integer digit to the corresporgdikSCII character.

EXTRACT | Extract the least significant digit from a numbesmthe top of the
parameter stack. nis divided by the radiBARSEand the extracted
digit is converted to its ASCII character whiclpisshed on the
parameter stack.

<# Initiate the output number onversion process byirgd® ADbuffer
address into system variatiie.D, which points to the location next
numeric digit will be stored.

HOLD Append an ASCII character whose code is enttip of the parameter
stack, to the numeric out put string-dtD. HLDis decremented to
receive the next digit.

i # (u--u)

; Extract one digit from u and append the digit to output string.

COLON 1,#"

79

DIG:
RCALL BASE
RCALL AT
RCALL EXTRC
RJIMP HOLD

; #S (u--0)
; Convert u until all digits are added to the outpu t string.

COLON 2,"#S"
DIGS:
DIGS1:
RCALL DIG
RCALL DUPP
RCALL QBRAN

.DW DIGS2
RIJMP DIGS1
DIGS2:
RET
; SIGN n--)

; Add a minus sign to the numeric output string.

COLON 4,"SIGN"
SIGN:

RCALL ZLESS

RCALL QBRAN

.DW SIGN1

RCALL DOLIT

.DW

RCALL HOLD
SIGN1: RET

; #> (w--bu)
; Prepare the output string to be TYPE'd.

COLON 2,"#>"
EDIGS:

RCALL DROP
RCALL HLD
RCALL AT
RCALL PAD
RCALL OVER
RJIMP SUBB

Extract one digit from integer on the top of fa@ameter stack, according
to radix inBASE and add it to output numeric string.

#S Extract all digits to output string until the@eger on the top of the
parameter stack is 0.

SIGN Insert a - sign into the numeric output gfhiinthe integer on the top of the
parameter stack is negative.

#> Terminate the numeric conversion and pusheadbeess and length of
output numeric string on the parameter stack.

80

; Str

(w--bu)

; Convert a signed integer to a numeric string.

; COLON 3,)'str"

STR:
RCALL DUPP
RCALL TOR
RCALL ABSS
RCALL BDIGS
RCALL DIGS
RCALL RFROM
RCALL SIGN
RJIMP EDIGS

; HEX ()

: Use radix 16 as base for numeric conversions.

COLON 3,"HEX"

HEX:
RCALL DOLIT
.DW 16
RCALL BASE
RIMP STORE

: DECIMAL (--)

: Use radix 10 as base for numeric conversions.

COLON 7,"DECIMAL"

DECIM:
RCALL DOLIT
.DW10
RCALL BASE
RIMP STORE
str Convert a signed integer on the top of thaipater stack to a numeric
output string.
HEX Set numeric conversion radix to 16 for hexauat conversions.
DECIMAL | Set numeric conversion radix to 10 for decimal @sions.

5.3.2 Numeric Input

The 328eForth text interpreter must handle numiogust to the system. It parses
commands out of the input stream and executes ileeguence. When the text
interpreter encounters a string which is not the@af a command in the dictionary,

it assumes that the string must be a number aaohpts to convert the ASCII digit
string to a number according to the current radiWhen the text interpreter succeeds
in converting the string to a number, the numbguished on the parameter stack for
future use, if the text interpreter is in the ipteting mode. If itis in the compiling
mode, the text interpreter will compile the numtmethe dictionary as an integer
literal so that when the command under construdidater executed, the integer
value will be pushed on the parameter stack.

If the text interpreter fails to convert the stritoga number, this is an error condition
which will cause the text interpreter to abort, tpams error message to you, and then

81

wait for your next line of commands.

;; Numeric input, single precision

; DIGIT? (cbase--ut)
; Convertacharactertoitsnumericvalue.Aflag

' COLON 6,"DIGIT?"

DIGTQ:
RCALL TOR
RCALL DOLIT
DW 0
RCALL SUBB
RCALL DOLIT
DW 9
RCALL OVER
RCALL LESS
RCALL QBRAN
DW DGTQ1
RCALL DOLIT
DW 7
RCALL SUBB
RCALL DUPP
RCALL DOLIT
DW 10
RCALL LESS
RCALL ORR

DGTQ1:
RCALL DUPP
RCALL RFROM
RIJMP ULESS

; NUMBER? (a--nT|aF)
; Convert a number string to integer. Push a flag o

COLON 7,"NUMBER?"
NUMBQ:
RCALL BASE
RCALL AT
RCALL TOR
RCALL DOLIT
.DW 0
RCALL OVER
RCALL COUNT
RCALL OVER
RCALL CAT
RCALL DOLIT
.DW '$
RCALL EQUAL
RCALL QBRAN
.DW NUMQ1
RCALL HEX
RCALL SWAPP
adiw tosl,1
RCALL SWAPP
shiw tosl,1
NUMQL1:

indicatessuccess.

n tos.

82

RCALL
RCALL
RCALL

.DW
RCALL
RCALL
RCALL
RCALL
RCALL
RCALL
RCALL
RCALL
RCALL
RCALL
.DW
shiw
RCALL
NUMQ?2:
RCALL
RCALL
RCALL
RCALL
RCALL
RCALL
RCALL
.DW
RCALL
RCALL
RCALL
RCALL
RCALL
RCALL
adiw
RCALL
.DW
RCALL
RCALL
RCALL
.DW
RCALL
NUMQ3:
RCALL
RIMP
NUMQ4:
RCALL
RCALL
RCALL
RCALL
RCALL
.DW
NUMQ5:
RCALL
NUMQE6:
RCALL
RCALL
RCALL
RCALL

OVER
CAT
DOLIT

EQUAL
TOR
SWAPP
RAT
SUBB
SWAPP
RAT
PLUS
QDUP
QBRAN
NUMQG6
tosl,1
TOR

DUPP
TOR
CAT
BASE
AT
DIGTQ
QBRAN
NUMQ4
SWAPP
BASE
AT
STAR
PLUS
RFROM
tosl,1
DONXT
NUMQ2
DROP
RAT
QBRAN
NUMQ3
NEGAT

SWAPP
NUMQ5

RFROM
RFROM
DDROP
DDROP
DOLIT

DUPP

RFROM
DDROP
RFROM
BASE

83

RJIMP

STORE

DIGIT?

Convert an ASCII numeric digit on the top of the parameter stack to
its numeric valuer according to current radix. If conversion is
successful, push a true flag abane If not successful, retum and a
false flag.

NUMBER?

Convert a count string of ASCII numeric digits atdtiona to an
integer. If first character is a $, convert in Ad&cimal; otherwise,
convert using radix in BASE. If first characterais, negate converted
integer. If an illegal character is encounterbd,dddress of string and
a false flag are pushed on the parameter stackcceSsful conversion
pushes integer value andrae flag on the parameter stack.
NUMBER"s very complicated because it has to cover mamadts in
the input numeric string. It also has to deteetéalror condition when
it encounters an illegal numeric digit.

5.3.3 Basicl/O

328eForth system assumes that it communicatestaiémvironment only through a
serial 1/0 interface. To support the serial I/@lyathree words are needed:

;; Basic I1/0

; KEY (--¢)
; Wait for and return an input character.

COLON

KEY:

KEY1:
RCALL
RCALL
.DW
RET

; SPACE

COLON
SPACE:

RCALL

RJIMP

; CHARS

; COLON

CHARS:
RCALL
RCALL
RJIMP

CHARL:

KEY1

()

; Send the blank character to the output device.

(+nc--)
; Send n characters to the output device.

3,"KEY"

QRX
QBRAN

5,"SPACE"

BLANK
EMIT

5,"CHARS"

SWAPP
TOR
CHARZ2

84

RCALL DUPP

RCALL EMIT
CHARZ2:
RCALL DONXT
.DW CHAR1
RJIMP DROP
; SPACES (+n--)
; Send n spaces to the output device.

COLON 6,"SPACES"

SPACS:
RCALL BLANK
RIJMP CHARS
?KEY Return a false flag if no character is pegdmthe receiver. |If a
character is received, the character and a trgeafia returned.
KEY Execute?KEY continually until a valid character is received dhe
character is returned.
EMIT Send a character out through the transmé. lin
SPACE | Output a blank (space) character, ASCII 32.
CHARS | Output n ASCII characters. The ASCII code is antthp of the
parameter stack, and number n is the second itetimeoparameter stack
SPACES| Output n blank (space) characters.
; TYPEHbu--)

Output u characters from b.

COLON 4,"TYPE"

TYPES:
RCALL TOR
RIJMP TYPE2
TYPEZ:
RCALL COUNT
RCALL TCHAR
RCALL EMIT
TYPE2:
RCALL DONXT
.DW TYPE1
RJIMP DROP
; ITYPE (bu--)

Output u characters from b.

COLON 5,"ITYPE"

ITYPES:
RCALL
RJIMP

ITYPEL:
RCALL
RCALL
RCALL

ITYPEZ2:
RCALL

TOR
ITYPE2

ICOUNT
TCHAR
EMIT

DONXT

85

.DW ITYPEL
RJIMP DROP

; CR (-)
; Output a carriage return and a line feed.

COLON 2,"CR"

CR:
RCALL DOLIT
.DW CRR
RCALL EMIT
RCALL DOLIT
.DW LF
RIMP EMIT

TYPE | Output n characters from a string in RAM memory.he Becond item on
the parameter stack is the address of the striag,and the length in bytes
is on the top of the parameter stack.

ITYPE | Output n characters from a string in the flash mgmoThe second item on
the parameter stack is the address of the striag,and the length in bytes
is on the top of the parameter stack.

CR Output a carriage-return and a line-feed, ASGIland 10.

String literals are data structures compiled in poond command, in-line with other
tokens, literal structures, and control structure&.string literal must start with a
string token which knows how to handle the follogvstring at run time. Here are
two examples of string literals:

:XxX ... $" A compiled string” ... ;
yyy" Anoutput string” ... ;

In compound command xx$,' is an immediate command which compiles the
following string as a string literal preceded bygpeecial toker$”| . When$"| is
executed at run time, it returns the address efdtring on the parameter stack. In

yyy, ." compiles a string literal preceded by anotherraKe , which prints the
compiled string to the output device at run time.

; do$ (—-a)
; Return the address of a compiled string.

; COLON COMPO+3,"do%"
DOSTR:
RCALL RFROM ra
RCALL RFROM raa
RCALL DUPP raaa
RCALL DUPP raaaa
movw zl,tosl
readflashcell tosl,tosh
clr tosh ra a a count
RCALL TWOSL
RCALL PLUS
ADIW TOSL,1 yraaa

86

RCALL TORj;raa
RCALL SWAPP ara
RCALL TOR;a
RCALL CELLS ;byte address
RET
;8" (-a)
; Run time routine compiled by $". Return address o f a compiled
string.
; COLON COMPO+3,'$
; .DB "
STRQP:
RCALL DOSTR
RET ;force a call to do$
2 0-)
; Run time routine of ." . Output a compiled string
; COLON COMPO+3,"'
; .DB "
DOTQP:;
RCALL DOSTR
RCALL ICOUNT
RIJMP ITYPES
;R (n+n--)
; Display an integer in a field of n columns, right justified.
COLON 2,/".R"
DOTR:
RCALL TOR
RCALL STR
RCALL RFROM
RCALL OVER
RCALL SUBB
RCALL SPACS
RIMP TYPES
do$ Push the address of a string literal on tmarpater stack. Itis called by
string token like$"| or."| , which precede their respective strings in
flash memory. Therefore, the second item on themestack points to the
string. This address is pushed on the parametek.st This second item
on the return stack must be modified so that it point to the next token
after the string literal. This way. the token attee string literal will be
executed, skipping over the string literal. B&th and.”| use the word
do$, which retrieve the address of a string staethe second item on the
return stack.
$ Push the address of the following string anpghrameter stack, and then
executes the token immediately following the string
Y Print the following string, and then executies token immediately
following the string.
R Print a signed integer , the second item on the parameter stack,
right-justified in a field of xi characters. ris on the top of the

87

| parameter stack.

s UR (u+n--)
; Display an unsigned integer in n column, right ju stified.

COLON 3,"U.R"
UDOTR:

RCALL TOR
RCALL BDIGS
RCALL DIGS
RCALL EDIGS
RCALL RFROM
RCALL OVER
RCALL SuUBB
RCALL SPACS
RJIMP TYPES

;U (u--)
; Display an unsigned integer in free format.

COLON 2,"U."
UDOT:

RCALL BDIGS

RCALL DIGS

RCALL EDIGS

RCALL SPACE

RJIMP TYPES

. (w--)
; Display an integer in free format, preceeded by a space.
COLON 1,""
DOT:
RCALL BASE
RCALL AT
RCALL DOLIT
.DW10
RCALL XORR :?decimal
RCALL QBRAN
.DWDOT1
RJIJMP UbDOT
DOT1:

RCALL
RCALL
RIMP

;) ? (a-)

STR
SPACE
TYPES

; Display the contents in a memory cell.

COLON 1,"?"
QUEST:
RCALL AT
RIJMP DOT

With the number formatting command set as showneabane can format numbers

88

for output in any format desired. The free outjouinat is a number string preceded
by a single space. The fix column format displaysimber right-justified in a
column of a pre-determined width. The commandsU.', and? use the free

format. The words .R and U.R use the fix format.

U.R Print an unsigned integerright-justified in a field of A characters.

U. Print an unsigned integerin free format, followed by a space.
Print a signed integer in free format, followed by a space.

? Print signed integer stored in memaryn the top of the parameter stack,
in free format followed by a space.

534 Parsing

Parsing is always considered a very advanced tomiomputer science. However,
because FORTH uses very simple syntax rules, gaisiasy. FORTH input

stream consists of ASCII strings separated by spaced other white space characters
like tabs, carriage returns, and line feeds. Eweihterpreter scans the input stream,
parses out strings, and interprets them in sequen&tter a string is parsed out of the
input stream, the text interpreter will ‘interpiigti.e., execute it if it is a valid
command, compile it if the text interpreter is @ ttompiling mode, and convert it to
a number if the string is not a FORTH command.

parse is the elementary command to do text parsing. mRtee input stream, which
starts abl and is oful characters long, it parses out the first texhgtdelimited by
charactec. It returns the addre§® and lengthu2 of the string just parsed out and
the differencen betweerbl andb2. Leading delimiters are skipped over.

The case where the delimiting character is a spES€Il 32) is special, because this
is when the text interpreter is parsing for valaenands. It thus must skip over
leading space characters. Wipamse is used to compile string literals, it will use
the double quot character (ASCII 34) as the deiimgitharacter. It the delimiting
character is not spagearse starts scanning immediately, looking for the deatgd
delimiting character.

;; Parsing

; parse (buc--budelta; <string>)
; Scan string delimited by c. Return found string a nd its offset.

; COLON 5,"parse"

PARS:
RCALL TEMP
RCALL STORE
RCALL OVER
RCALL TOR
RCALL DUPP
RCALL QBRAN
.DW PARSS
SBIW TOSL,1
RCALL TEMP

89

RCALL
RCALL
RCALL
RCALL
.DW
RCALL
PARS1:
RCALL
RCALL
RCALL
RCALL
RCALL
RCALL
RCALL
.DW
ADIW
RCALL
.DW
RCALL
RCALL
RCALL
.DW
RCALL
RET
PARS2:
RCALL
PARS3:
RCALL
RCALL
RCALL
PARS4:
RCALL
RCALL
RCALL
RCALL
RCALL
RCALL
RCALL
RCALL
RCALL
RCALL
.DW
RCALL
PARSS:
RCALL
.DW
ADIW
RCALL
.DW
RCALL
RCALL
RJIMP
PARSG:
RCALL
RCALL
RCALL
ADIW
RCALL

CAT
BLANK
EQUAL
QBRAN

PARS3
TOR

BLANK
OVER
CAT ;skip leading blanks ONLY
SUBB
ZLESS
INVER
QBRAN
PARS2
TOSL,1
DONXT
PARS1
RFROM
DROP
DOLIT
0
DUPP

RFROM

OVER
SWAPP
TOR

TEMP
CAT
OVER
CAT
SUBB :scan for delimiter
TEMP
CAT
BLANK
EQUAL
QBRAN
PARS5
ZLESS

QBRAN

PARS6
TOSL,1
DONXT

PARS4
DUPP
TOR
PARS7

RFROM
DROP
DUPP
TOSL,1
TOR

90

PARSY:
RCAL
RCAL
RCAL
RCAL
RJIMP

PARSS:
RCAL
RCAL
RJIMP

; PARSE

L OVER
L SuUBB
L RFROM
L RFROM
SUBB

L OVER
L RFROM
SUBB

(c--bu;<string>)

; Scan input stream and return counted string delim ited by c.

; COLON 5,"PARSE"

PARSE:
RCAL
RCAL
RCAL
RCAL
RCAL
RCAL
RCAL
RCAL
RCAL
RCAL
RCAL
RCAL
RCAL
RJIMP

;O ()
; Output

L TOR
L TIB
L INN
L AT
L PLUS ;current input buffer pointer
L NTIB
L AT
L INN
L AT
L SUBB ;remaining count
L RFROM
L PARS
L INN
PSTOR

following string up to next) .

COLON IMEDD+2,".("

DOTPR:
RCAL
.DW
RCAL
RJIMP

L DOLIT
L PARSE
TYPES

PARSE

Scan the input stream in the Terminal Input Bufifem where>IN
points to, until the end of the buffer, for a strickelimited by character.
It returns the address and length of the stringgzhout. PARSEcalls
parse to do the detailed works.PARSEs used to implement many
specialized parsing commands to perform differansipg functions.

Print the following string till the next) chaater. It is used to output
text to the serial output device.

;o (

; Ignore

(--)

following string up to next) . A comment.

COLON IMEDD+1,"("

PAREN:
RCAL

L DOLIT

91

DW)
RCALL PARSE
RJMP DDROP

V()

; Ignore following text till the end of line.

COLON IMEDD+1,"\\"

BKSLA:
RCALL DOLIT
.DW $D

RCALL PARSE
RJIMP DDROP

; CHAR --¢)

;. Parse next word and return its first character.

COLON 4,"CHAR"
CHARR:

RCALL BLANK

RCALL PARSE

RCALL DROP

RJIMP CAT

; TOKEN (--a; <string>)

; Parse a word from input stream and copy it to nam

; COLON 5,"TOKEN"

TOKEN:
RCALL BLANK
RCALL PARSE
RCALL DOLIT
.DW 31
RCALL MIN
RCALL HEREE
RCALL DDUP
RCALL CSTOR
RCALL DDUP
RCALL PLUS
ADIW TOSL,1
RCALL DOLIT
.DW 0
RCALL SWAPP
RCALL CSTOR
ADIW TOSL,1
RCALL SWAPP
RCALL UMOVE
RJIMP HEREE

; WORD(¢ -- a; <string>)

; Parse a word from input stream and copy it to cod

COLON 4,"WORD"
WORDD:

RCALL PARSE

RCALL HEREE

RCALL DDUP

e dictionary.

e dictionary.

92

RCALL CSTOR
RCALL DDUP
RCALL PLUS
ADIW TOSL,1
RCALL DOLIT
.DW 0
RCALL SWAPP
RCALL CSTOR
ADIW TOSL,1
RCALL SWAPP
RCALL CMOVE
RJIMP HEREE

(Discard the following string till the next) ala&ter. It is used to place
comments in source code.
\ Discard all characters till end of a line. dtused to insert comment lines

in source code.

CHAR | Parse the next string out but returns onlyfits¢ character in this string.
It gets an ASCII character from the input stream.

TOKEN | Parse out the next string delimited by the spaeeaditer. It then copies
this string as a counted string to the first fre=maan RAM memory and
returns its address. The length of the stringngéd to 31 characters.

WORD | Parse out the next string delimited by the ASCHrelsterc. It then
copies this string as a counted string to the fiest area in RAM memory
and returns its address. The length of the sterignited to 255 characters

5.3.5 Dictionary Search

In 328eForth, command records are linearly linked & dictionary. A command
record contains three fields: a link field holdithg name field address of the previous
command record, a name field holding the namecasiated string, and a code field
holding executable code and data. A dictionarycdetollows the linked list of
records to find a name which matches a text stringreturns the name field address
and the code field address, if a match is found.

The link field of the first command record contam®, indicating it is the end of the
linked list. A system variablEONTEXTholds an address pointing to the name field
of the last command record. The dictionary seatalts aCONTEXTand

terminates at the first matched name, or at tisé édsmmand record.

From CONTEXTwe locate the name field of the last commandrceoothe

dictionary. It this name does not match the sttinge searched, we can find the
link field of this record, which is 2 bytes lesaiththe name field address. From the
link field, we locate the name field of the nextramand record. Compare the name
with the search string. And so forth.

;; Dictionary search

; NAME> (na--ca)
; Return a code address given a name address.

93

COLON 5,"NAME>"

NAMET:
RCALL
RCALL
.DW
RCALL
RCALL
RIMP

; SAME?

ICOUNT
DOLIT
$1F
ANDD
PLUS
ALGND

(bau--baf\-0+)

; Compare u bytes in two strings. Return 0 if ident

© COLON
SAMEQ:
RCALL
RCALL
RIMP
SAMEL1:
RCALL
RCALL
RCALL
RCALL
RCALL
RCALL
RCALL
RCALL
RCALL
RCALL
RCALL
RCALL
RCALL
.DW
RCALL
RIMP
SAME2:
RCALL
.DW
RCALL
.DW
RET

5,"SAME?"

TWOSL
TOR
SAME2

OVER
RAT
CELLS
PLUS
AT
OVER
RAT
CELLS
PLUS
IAT
SUBB
QDUP
QBRAN

SAME2
RFROM
DROP

DONXT
SAME1

DOLIT
0

ical.

NAME> | Convert a name field address in a command recattictcode field

boundary.

address of this command record. Code field addsds® name field
address plus length of name plus one, and alignétetnext cell

SAME? | Compare two strings at addresaeandb for u bytes.
It returns a positive irtafja string is greater
thanb string. It returns a negative integeaistring is less thah string.

two strings are equal.

It returns a O if

; findava--canalaF)

; Searchavocabulary forastring. Returncaand n

aifsucceeded.

94

; COLON
FIND:
RCALL
RCALL
RCALL
RCALL
RCALL
RCALL
RCALL
RCALL
ADIW
RCALL
FIND1
RCALL
RCALL
.DW
RCALL
RCALL
RCALL
.DW
RCALL
RCALL
RCALL
RCALL
.DW
ADIW
RCALL
.DW
RJIMP
FIND2:
ADIW
RCALL
RCALL
RCALL
FIND3:
RJIMP
FINDG:
RCALL
RCALL
RCALL
SBIW
RJIMP
FIND4:
RCALL
.DW
SBIW
RCALL
RJIMP
FINDS5:
RCALL
RCALL
RCALL
RCALL
SBIW
RCALL

RCALL
RJIMP

4,"find"

SWAPP
DUPP
CAT
TEMP
STORE
DUPP
AT
TOR
TOSL,2
SWAPP

DUPP
QBRAN
FIND6
DUPP
IAT
DOLIT
$FF3F
ANDD
RAT
XORR
QBRAN
FIND2
TOSL,2
DOLIT
-1
FIND3

TOSL,2
TEMP
AT
SAMEQ

FIND4

RFROM
DROP
SWAPP
TOSL,2
SWAPP

QBRAN
FIND5
TOSL,4
IAT
FIND1

RFROM
DROP
SWAPP
DROP
TOSL,2
DUPP

NAMET
SWAPP

va at+2 --
:a+2 va --

:a+2 va+2 --

;at2 vat2 --

95

; NAME? (a--canalaF)
; Search all context vocabularies for a string.

© COLON 5,"NAME?"
NAMEQ:
RCALL CNTXT
RCALL AT
RIJMP FIND

find Assume that A count string is at RAM memory addeesand the name
field address of the last command record is in R&ddresva. If the
string matches the name of a command, both the fteldeaddress and the
name field address of the command record are mdurnif the string is
not a valid command, the original string addressafalse flag are
returned. find runs the dictionary search very quickly becausiesit
compares the length byte and the first charactdramame field as a 16 |
integer. In most cases of mismatch, this compansould fail and the
next record can be reached through the link field the first two
characters match, th&AME?s invoked to compare the rest of the name
field, one cell at a time. Since both the target string and the name
field are null filled to the cell boundary, the cpamison can be performed
quickly across the entire name field without wongyiabout the end
conditions.

14

t

NAME? | Search the dictionary starting@ONTEXTor a name string at address
Return the code field address and name field addir@esmatched
command is found. Otherwise, return the originahg address and a
false flag.

5.3.6 Terminal Input

The text interpreter interprets source text reakivem an input device and stored in
the Terminal Input Buffer. To process characterthe Terminal Input Buffer, we
need special commands to deal with the specialitons of backspace character and
carriage return: On top of stack, three speciedipeters are referenced in many
commandsbot is the Beginning Of the input Buffexpt is the End Of the input
Buffer, andcur points to the current character in the input buffe

;; Terminal response

; "H (bot eot cur -- bot eot cur)
; Backup the cursor by one character.

; COLON 2,""H"
BKSP:
RCALL TOR

RCALL OVER
RCALL RFROM
RCALL SWAPP

96

RCALL
RCALL
RCALL
.DW
RCALL
.DW
RCALL
SBIW
RCALL
RCALL
RCALL
.DW
RCALL
BACK1:

RET

OVER
XORR
QBRAN
BACK1
DOLIT
BKSPP
EMIT
TOSL,1
BLANK
EMIT
DOLIT
BKSPP
EMIT

; TAP (bot eot cur c -- bot eot cur)
; Accept and echo the key stroke and bump the curso

;. COLON

TAP:
RCALL
RCALL
RCALL
RCALL
adiw
ret

3,"TAP"

DUPP
EMIT
OVER
CSTOR

tosl,1

; KTAR bot eot cur ¢ -- bot eot cur)
; Process a key stroke, CR or backspace.

; COLON
KTAP:
RCALL
SBIW
RCALL
.DW
SBIW
RCALL
.DW
RCALL
RJIMP
KTAP1:
RJIMP
KTAP2:
RCALL
RCALL
RCALL
RJIMP

4,"KTAP"

DUPP
TOSL,CRR
QBRAN

KTAP2
TOSL,BKSPP
QBRAN

KTAP1
BLANK
TAP

BKSP

DROP
SWAPP
DROP
DUPP

; accept (bu--bu)
; Accept characters to input buffer. Return with ac

; COLON

ACCEP:
RCALL
RCALL
RCALL

6,"accept”

OVER
PLUS
OVER

tual count.

97

ACCP1:

RCALL DDUP
RCALL XORR
RCALL QBRAN
.DW ACCP4
RCALL KEY
RCALL DUPP
RCALL BLANK
RCALL SUBB
RCALL DOLIT

.DW

RCALL ULESS
RCALL QBRAN

.DW ACCP2

RCALL TAP

RIJMP ACCP3
ACCP2:

RCALL KTAP
ACCP3:

RIJMP ACCP1

ACCP4:

RCALL DROP
RCALL OVER
RJIMP SUBB

$5F

"H

Process back-space character (ASCII 8). Hemrahe last character entered,
and decrement the character poimmi@r . If cur =bot , do nothing becauss
you cannot backup beyond beginning of input buffer.

1%

TAP

Output a character to terminal, store in cur , and increment the character
pointercur , which points to the current character in the tripuffer. bot
andeot are also pointers pointing to the beginning and @frthe input
buffer.

KTAP

Process character bot is pointing at the beginning of the input buffer,
andeot is pointing at the end.cur points to the current character in the
input buffer. ~ The characteris normally stored atur , which is then
incremented by 1. K is a carriage-return (ASCII 13), echo a space and
makeeot =cur ., thus terminating the input process c lis a back-space
(ASCII 8), erase the last character and decremant

accept

Acceptu characters into an input buffer starting at adglbe®r until a
carriage return (ASCII 13) is encountered. Theaiealfu returned is the
actual number of characters received.

; EXPECT (bu--)
; Accept input stream and store count in SPAN.

COLON 6,"EXPECT"

EXPEC:

RCALL ACCEP
RCALL SPAN
RCALL STORE

RJIM

P DROP

98

; QUERY (--)
; Accept input stream to terminal input buffer.

COLON 5,"QUERY"

QUERY:
RCALL TIB
RCALL DOLIT
DW 80
RCALL ACCEP
RCALL NTIB
RCALL STORE
RCALL DROP
RCALL DOLIT
DW 0
RCALL INN
RIJMP STORE

EXPECT| Acceptu characters into an input buffer startingpbabr until a carriage
return is encountered. The number of charactersved is stored in
system variablSPAN

QUERY | Accept up to 80 characters from the input devicéhéoTerminal Input
Buffer. It also prepares the Terminal Input Bufier parsing by setting
#TIB to the length of the input text stream, and clegrIN which
points to the beginning of the Terminal Input Buffe

5.4 Interpreter
54.1 Error Handling
When error occurred, it is usually because theitegtpreter encounters a string

which can not be interpreted or processed. Thisgsis usually stored in a buffer in
RAM memory.

;; Error handling

; ERROR (a--)
; Return address of a null string with zero count.

. COLON 5,"ERROR"

ERROR:
RCALL SPACE
RCALL COUNT
RCALL TYPES
RCALL DOLIT
DW $3F
RCALL EMIT
RCALL CR
RCALL EMPTY_BUF
Idi yl,low(SPP)
Idi yh,high(SPP)
RIMP = QUIT

99

; abort" (f--)
; Run time routine of ABORT" . Abort with a message

; COLON COMPO+6,"abort"

; .DB

ABORQ:
RCALL QBRAN
.DW ABOR1 ;textflag
RCALL DOSTR
RCALL ICOUNT ;pass error string
RCALL ITYPES

RCALL CR
RJIMP QUIT
ABORL1:

RCALL DOSTR
RJIMP DROP

ERROR|] Print the string in RAM memory located at addrasfollowed by a?
mark and aborts. 'Abort' means flushing all flastmory buffers,
clearing the parameter stack, and returns to tterteerpreter loofQUIT.

abort" It is compiled with an error message stimg compound command.
Whenabort" is executed, it examines the top item on the patam
stack. Itthe flag is true, print out the followjierror message and
QUIT; otherwise, skip over the error message and ao@txecution the
next token.

542 Interpreter

Text interpreter in FORTH is like a conventionakogiting system of a computer. It
is the primary interface a user uses to get thepeden to do work. Since FORTH
uses very simple syntax rule--commands are sephbgtepaces, the text interpreter
is also very simple. It accepts a line of textirthe terminal, parses out a command
delimited by spaces, locates the command in thedary and then executes it. The
process is repeated until the input text is exlemlist Then the text interpreter waits
for another line of text and interprets it agaif.his cycle repeats until you are
exhausted and turns off the computer.

In 328eForth, the text interpreter is coded actremandQUIT. QUIT contains an
infinite loop which repeats tl@UERYEVAL command pair. QUERYaccepts a line
of text from the input terminal. EVAL interprets the text one command at a time till
the end of the text line.

;» The text interpreter

; SINTERPRET (a--)
; Interpret a word. If failed, try to convert it to an integer.

; COLON 10,"$INTERPRET"
INTER:

RCALL NAMEQ

RCALL QDUP ;?defined

100

RCALL QBRAN
.DW INTE1
RCALL IAT
RCALL DOLIT
.DW COMPO

RCALL ANDD ;?compile only lexicon bits

RCALL ABORQ

.DB 13," compile only"

RCALL EXECU

RET ;execute defined word
INTEZ:

RCALL NUMBQ

RCALL QBRAN

.DW INTE2

RET
INTEZ2:

RJIMP ERROR ;error

L ()

; Start the text interpreter.

COLON IMEDD+1,T"
LBRAC:

RCALL DOLIT

.DW INTER*2

RCALL TEVAL

RJIMP STORE

; LOK (--)

; Display "ok" only while interpreting.

; COLON 3,".0K"

DOTOK:
RCALL DOLIT
.DW INTER*2
RCALL TEVAL
RCALL AT
RCALL EQUAL
RCALL QBRAN
.DW DOTO1
RCALL DOTQP
.DB 2,"ok"

DOTO1: RIMP

CR

SINTERPRET

Execute a command whose name string is storecdagssh on the
parameter stack. If the string is not a valid cand) convert it to &
number. Failing the numeric conversion, exe&R&RORand return
to QUIT.

Activate the text interpreter by storing the edikld address of
$INTERPRETInto the variabléEVAL , which is executed iBEVAL
while the text interpreter is in the interpretivede.

.OK

Print the familiarok> prompting message after executing to the €
of aline. The messagd> is printed only when the text
interpreter is in the interpretive mode. While goling, the prompt|

101

nd

| is suppressed.

; ?2STACK (--)
: Abort if the data stack underflows.

;. COLON 6,"?STACK"
QSTAC:
RCALL DEPTH
RCALL ZLESS ;check only for underflow
RCALL ABORQ
.DB 10," underflow"
RET

; EVAL(--)
; Interpret the input stream.

; COLON 4,"EVAL"
EVAL:
EVALL1: RCALL TOKEN
RCALL DUPP
RCALL CAT ;?input stream empty
RCALL QBRAN
.DW EVAL2
RCALL TEVAL
RCALL ATEXE
i RCALL INTER
RCALL QSTAC ;evaluate input, check stack
RJIMP EVAL1

EVAL2:
RCALL DROP
RIMP DOTOK
. Shell
; QUIT(--)

; Reset return stack pointer and start text interpr

COLON 4,"QuUIT"

QUIT:
Idi xl,low(RPP)
out SPLx
Idi xh,high(RPP)
out SPH,xh
RCALL DOLIT
.DW TIBB
RCALL TTIB
RCALL STORE
QUIT1:

RCALL LBRAC ;startinterpretation
QuUIT2:

RCALL QUERY ;getinput

RCALL EVAL

RIMP QUIT2 ;continue till error

eter.

?STACK | Check for stack underflow. Abort, resetting theapaeter stack pointer,

102

if the stack depth is negative.

EVAL It is contained in the text interpreter loyich parses commands from the
input stream and invokes whatever toketEMAL to process the
commands, either execute it WBINTERPRET or compile it with
$COMPILE

QUIT It is the operating system, the text intetereor a shell, of the 328eForth
system. Itis an infinite loop eForth will nevestgut. It useQUERY
to accept a line of commands from the input terirama then let&€VAL

to parse out the commands and execute them. @fiee is processed,
displays arok> message and wait for the next line of commandsheWV
an error occurred during execution, it prints ttrieng which caused the
error as an error message. After the error isrtegpit re-initializes the
system by clearing the return stack and comes toaceive the next ling
of commands. Because the behavidEWAL can be changed by storin
eitherSINTERPRET or SCOMPILEinto 'EVAL , QUIT exhibits the dual
nature of a text interpreter and a compiler.

—

©Q

543 Tools

328eForth is a very small system and only a verglisset of tool commands are
provided. Nevertheless, this set of tool commasg®werful enough to help you
debug new commands he adds to the system. Theysargery interesting
programming examples on how to use the commaneBoarth to build applications.

Generally, the tool commands present informationest in different parts of the CPU
in appropriate formats to let you inspect the rissa$ he executes commands in the
eForth system and commands he defined himself. tddleommands include
memory dump, stack dump, dictionary dump, etc.

X (--ca)
;. Search context vocabularies for the next word in input stream.

COLON 1,™
TICK:

RCALL TOKEN

RCALL NAMEQ ;?defined

RCALL QBRAN

.DW TICK1

RET ;yes, push code address
TICK1:

RIMP ERROR ;no, error

:» Tools

; DUMR a --)
; Dump 128 bytes from a, in a formatted manner.

COLON 4,"DUMP"

DUMP:
RCALL DOLIT
.DW 7

103

RCALL

TOR ;start count down loop

DUMP1: RCALL CR

RCALL
RCALL
.DW
RCALL
RCALL
RCALL
.DW
RCALL
DUMP2:
RCALL
RCALL
.DW
RCALL
RCALL
.DW
RCALL
RCALL
RCALL
.DW
RCALL
RCALL
.DW
RCALL
RCALL
.DW
RJIMP

DUPP

DOLIT
5

UDOTR

SPACE

DOLIT
15

TOR

COUNT

DOLIT

3

UDOTR

DONXT ;display printable characters
DUMP2

SPACE

DUPP

DOLIT

16

SUBB

DOLIT

16

TYPES

DONXT

DUMP1 ;loop till done
DROP

Search the dictionary for the following stringif the string is a valid
command, return its code field address. If thegtis not a valid
command, print a ? mark.

DUMP | Print 128 bytes of data starting at RAM addfege the terminal. It dump

16 bytes to a line.

byte pages.

A line begins with the addrefsthe first byte, followed
by 16 bytes shown in hex, 3 columns per bytes. th&tend of a line are th
16 bytes shown in ASCII characters.
by underscores (ASCII 95).

Non-printatblaracters are replace

ATmega328P has memaarozed in 128
It is convenient to dump memory orge @& a time. DUMP
commands in most FORTH system takes and address lendth as

parameters to dump a memory array.

)

D

-

; IDUMP

(a--)

; Dump u bytes from a, in a formatted manner.

COLON 5,"IDUMP"

IDUMP:
RCALL
.DW
RCALL

IDUMP1:
RCALL
RCALL
RCALL

DOLIT
7
TOR ;start count down loop

CR
DUPP
DOLIT

104

.DW

RCALL
RCALL

RCAL
.DW
RCAL
IDUMP2:
RCAL
RCAL
.DW
RCAL
RCAL
.DW
RCAL
RCAL
RCAL
.DW
RCAL
RCAL
.DW
RCAL
RCAL
.DW
RJIMP

.S (.-
Display the contents of the data stack.

COLON 2,".S"

DOTS:
RCAL
RCAL
RJIMP

DOTS1:
RCAL
RCAL
RCAL

DOTS2:
RCAL
.DW
RCAL
.DB
RET

5
UDOTR
SPACE
DOLIT
15
TOR

L

L

L
L

ICOUNT
DOLIT
3
UDOTR
DONXT
IDUMP2
SPACE
DUPP
DOLIT
16
SUBB
DOLIT
16
ITYPES
DONXT
IDUMP1 ;loop till done
DROP

L
L ;display printable characters
L
L
L

L
L

L
L

)

L
L

DEPTH ;stack depth
TOR ;start count down loop
DOTS2 ;skip first pass

L
L
L

RAT

PICK

DOT ;index stack, display contents

L DONXT
DOTS1
DOTQP

4," <sp"

;loop till done
L

IDUMP

Print 128 bytes of data starting at flash addeessthe terminal. It dump
16 bytes to a line. Aline begins with the add@she first byte,
followed by 16 bytes shown in hex, 3 columns paeby At the end of a
line are the 16 bytes shown in ASCII characterson-Nrintable characters
are replaced by underscores (ASCII 95). ATmega3#tg§Bnizes the flask
memory in pages of 128 bytes. It is conveniermump flash memory
one page at atime. ATmega328P uses 16-bit magtstrections, and
addresses flash memory using 16-bit cell addresdeshoose to address

flash memory also in bytes, adUMPdisplays byte addresses. Be

[v)

aware of this difference when you read machineuistbns.

105

One important discipline in learning FORTH is tari@ how to use the parameter
stack effectively. All commands must consume thgut parameters on the stack
and leave only their intended results on the sta@loppy usage of the parameter
stack is often the cause of bugs which are veficdif to detect later, as unexpected
items left on the stack could result in unpredilgdi®ehavior. .S should be used
liberally during programming and debugging to eeghiat the correct parameters are
left on the parameter stack.

The parameter stack is the center for arithmetitlagic operations. It is where
commands receive their parameters and also wheyddft their results. In
debugging a new command which may use stack itehéeave items on the stack,
the best was to debug it is to inspect the pararstek, before and after its
execution. To inspect the parameter stack nomutestely, use the commans .

—h

S Print the contents of the parameter stackearfrée format. The bottom ¢
the stack is aligned to the left margin. The temiis shown towards the
left and followed by the charactessp. .S does not change the data
stack so it can be used to inspect the data stacklastructively at any
time.

The dictionary contains all command records definetie system, ready for
execution and compilation.WORDSommand allows you to examine the dictionary
and to look for the correct names of commands s& gau are not sure of their
spellings. WORDSollows the dictionary link in the system varial@®NTEXTand
displays the names of all commands in the dictipnafhe dictionary links can be
traced easily because the link field in the headl@rcommand points to the name
field of the previous command, and the link fieddwo bytes below the
corresponding name field.

>NAMHinds the name field address of a word from theesponding code field
address in a command record. If the command datesxist in the dictionary, it
returns a false flag. It is the mirror image af tommandNAME>which returns the
code field address of a command from its name aeldress. It is difficult to scan
backward from code field to locate the beginninghef name field, because we do not
know how long the name field is>NAMEs therefore more complicated because the
entire dictionary must be searched to locate itsenfield.

; >NAME (ca--na|F)
Convert code address to a name address.

;. COLON 5,">NAME"
TNAME:

RCALL TOR

RCALL CNTXT

RCALL AT ;na
TNAM1:

RCALL DUPP :na na

RCALL QBRAN

.DW TNAM2

106

RCALL
RCALL
RCALL
RCALL
RCALL

.DW
SBIW

RCALL
RCALL

.DW
TNAMZ2:

RCALL

RJIMP

; JID (na--
; Display

; COLON
DOTID:

RCALL
RCALL

.DW

RCALL

RJIMP

; WORDS
; Display

DUPP ;na na
NAMET ;naca
RAT ;nacaca
XORR naf
QBRAN
TNAM2

TOSL,2 ;la

IAT ;na’

BRAN

TNAM1

RFROM
DROP

:naor0

)

the name at address.
3,". I Dll

ICOUNT

DOLIT
31

ANDD
ITYPES

(-)

the names in the context vocabulary.

COLON 5,"WORDS"

WORDS:

RCALL
RCALL
RCALL

CR
CNTXT
AT :na

WORS1:

RCALL
RCALL

.DW

RCALL
RCALL
RCALL

SBIW

RCALL
RCALL

.DW
WORS2:
RET

QDUP
QBRAN
WORS2
DUPP
SPACE
DOTID :display a name
TOSL,2 ;la

IAT ;na’

BRAN

WORS1

:end of list?

;na na

>NAME

Return a code field address,, of a command from its name field
addresspa. If xt is not a valid code field address, return 0. olliofvs
the linked list of the dictionary, and from evergme field address we ca
get a corresponding code field address. If thdyesk is not the same a
xt , we go to the name field of the next command.xt Ifis a valid code
field address, we surely will find it. If the ergtidictionary is searched
andxt is not found, it is not a valid code field address

=)

Display the name of a command, given the n&elé address of this
command. It replaces non-printable charactersnanae by

107

under-scores.

WORDS| Display all the names in the dictionary. The orofiewords is reversed
from the compiled order. The last defined commiarghown first.

544 Sartup

After the computer is turned on, it executes soatev@ machine code &TART to

set up the CPU hardware. Then it jump€OLD to initialize the 328eForth system
which is the FORTH Virtual Machine. It finally jups toQUIT and starts the text
interpreter. COLD andQUIT are the topmost layers of 328eForth system.

Because all the system variable in 328eForth atielined from a data array in flash
memory, 328eForth is eminently ROMable and suit&ni@mbedded applications in
ATmega328P. Before falling infQUIT to enter into the text interpreter lodpOLD
command executes a boot routine whose code addrssed in system variable
'BOOT. This code address can be vectored to an agphicadmmand which
defines the proper behavior of the system on payeand on reset. Initially
'BOOT contains the code field addresshof.

:» Hardware reset

»hi ()

; Display the sign-on message of eForth.

;. COLON 2/,/'hi"
HI:
;. RCALL STOIO
RCALL CR
RCALL DOTQP ;initialize /0O
.DB 15,"328eForth v3.01" ;model
RIMP CR

, CoL --)
; The hilevel cold start sequence.

COLON 4,"CcoLD"
COLD:
COLD1:
RCALL STOIO
RCALL DOLIT
.DW $100
RCALL DUPP
RCALL READ :initialize user area
RCALL DOLIT ;init older buffer
.DW OLDER
RCALL AT X
RCALL READ_FLASH
RCALL SWITCH
RCALL DOLIT :init newer buffer
.DW OLDER
RCALL AT X
RCALL READ_FLASH
RCALL SWITCH

108

RCALL DDROP

RCALL TBOOT

RCALL ATEXE

RIJMP QUIT ;start interpretation

hi The default start-up routine in 328eForth. initializes the serial /0O device
and then displays a sign-on message. This is wiuerean customize his
application. From here one can initialize the eysto start his own
application.

1%

'BOOT | A system variable loaded at RAM memory address $100is originally
vectored tdi .

COLD | A high level compound command executed upon powecalled from the
low level START routine. Its initializes the system variables,@xes the
boot-up routine vectored througBOOT, and then falls into the text
interpreter looQUIT.

5.5 Compiler

ATmega328P, with its Harvard architecture, is Veogtile to FORTH. It is difficult

to extend an interactive FORTH system in the flm&mory. You can change erased
bits from 1 to 0. But, when you want to changeOhib bit 1, you have to erase a
whole page. The flash memory in ATmega328P isiBpddo endure 10,000 erase
cycles. You have to be very careful about theaseecycles when you are
programming in FORTH, because you will write andwé&e many small commands
many, many times until you get them right. To miirde the erase cycles and to
extend the life of flash memory, I took out the bign in Chuck Moore's arsenal: the
ping-pong BLOCK buffers.

| use two 128 byte page buffers to store compitetec New FORTH commands are
compiled into these buffers. Two buffers are neagsso that forward references
can be resolved across a page boundary. Othemvésg; more erase cycles would
be wasted when building structures in adjacent pafjflash memory. Only when
both buffers are full, the least recently used di§ flushed into the flash memory,
before a new page of flash memory is read intolibfer.

The disadvantage is that after a new command isetefyou cannot execute it unless
it is first flushed. Executing a command in a bufivill definitely crash the system.
Always remember to includeFLUSHcommand at the end of a source code file.
When you are compiling lines of code interactiveiynember to do BLUSHbefore
executing any command you just typed in. Otherybseprepared for a crash and
reload 328eForth system from AVR Studio 4. Thieewill happen, believe me,

and it is distressing. But, remember we are dgalitth a microcontroller, and its
flash memory can endure only 10,000 erase cycles.

5.5.1 AccessFlash Memory

; Flash memory read, write, and erase.

109

.equ PAGESIZEB =PAGESIZE*2 ;PAGESIZEB is page siz
words

.def spmcrval =r20

.def looplo =r22

.def loophi =123

; Page Erase
; ERASE (a--)
; Erase a page of flash memory

COLON 5,"ERASE"
ERASE:
movw zl,tosl
loadtos
ERASE_1:
Idi spmcrval, (1<<PGERS) | (1<<SELFPRGEN)
rcall Do_spm
; re-enable the RWW section
Idi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
rfmp Do_spm

; Page Write
; WRITE (ram flash --)
; transfer data from RAM to Flash page buffer

COLON 5,"WRITE"

WRITE:

movw zl, tosl

loadtos

movw xl, tosl

loadtos
WRITE_1:

Idi looplo, low(PAGESIZEB) ;init loop variable
Wrloop:

Id ro, X+

Id rl, X+

Idi spmcrval, (1<<SELFPRGEN)
rcall Do_spm

adiw ZL, 2
subi looplo, 2 ;use subi for PAGESIZEB<=256
brne Wrloop

; execute Page Write
subi ZL, low(PAGESIZEB) ;restore pointer
sbci ZH, high(PAGESIZEB) ;not required for PAGESI
Idi spmcrval, (1<<PGWRT) | (1<<SELFPRGEN)
rcall Do_spm

; re-enable the RWW section
Idi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
rfmp Do_spm

; Page Read
; READ (flash ram --)
; transfer data from Flash to RAM page buffer

COLON 4,"READ"
READ:

movw x| tosl

loadtos

einBYTES, not

ZEB<=256

110

movw zl,tosl
loadtos
READ_1:
; read back and check, optional
Idi looplo, low(PAGESIZEB) ;init loop variable

Rdloop:
Ipm ro, Z+
st X+, 10
subi looplo, 1 ;use subi for PAGESIZEB<=256
brne Rdloop
ret
Do_spm:
; check for previous SPM complete
Wait_spm:

in templ, SPMCSR
sbrc templ, SELFPRGEN
rmp Wait_spm

; SPM timed sequence
out SPMCSR, spmcrval
spm
ret

ERASE | Erase one 128 byte page of flash memory. The pddess is on the
top of the parameter stack.

WRITE | Copy the contents of one 128 byte page in RAM mgnstarting at RAM
addressam, to an page of flash memory, starting at flashreskilash
All addresses are byte addresses.

READ | Copy the contents of one 128 byte page in flash ongnstarting at flash
addresglash , to an page of RAM memory, starting at RAM addrass.
All addresses are byte addresses.

ERASE WRITE andREADcommands are all adapted from sample code listéuki
AVR Data Book published by Atmel Corp: doc8271.p8tBit AVR Microcontroller
with 4/8/16/32K Bytes In-System Programmable Flash"

55.2 Buffersand Pointers

To 128-byte buffers are allocated in the high ehBRAM memory:BUF0 at $800,
andBUF1 at $880, for flash memory accessing. Two buffEnters are allocated at
low RAM memory: NEWAat $11C an@®LDat $1E. The buffer pointers have the
following format:

15 Bits14-7 BEits 6-1 0

Dirty Bit Page Address Byte Address Buffer Code

Format of Flash Buffer Fointer

111

The buffer pointer actually hold the address oy lin flash memory. Bits 14-7 are
for the page address, and bits 6-0 are byte addiidss a page. Since
ATmega328P has only 32 KB of flash memory, Bit 450t used for addressing, and
is reserved for a Dirty Bit which indicates whethliee contents in this buffer was
modified. If Dirty Bit is set, its contents mus¢ Bushed back into the flash memory
when this buffer is allocated for another pagdadt memory. If this Dirty Bit is
cleared, the buffer has not been modified, andhemnqiage can be loaded into this
buffer immediately.

As flash memory is accessed one page at a tim&\tteeAddress field is always
cleared. The least significant Bit O is used ttedaine which physical buffer is
associated with this buffer pointer. Bit O is cehwhen the buffer pointer points to
BUFOat $800. Bit 0 is set when the buffer pointemg®toBUF1 at $880.

Buffer pointerNEWAt $11C always points to the buffer which is nresently
accessed, and buffer pointetDat $11E always points to the buffer with is acedss
earlier. When we need to access a new page of it@snory, it is always read into
the buffer pointed to b@LD If data inOLDwas modified and its Dirty Bit is set,
data in the old buffer must be flushed to flash rmgnbefore a new page of data is
read in.

1@ (a-w)
; Push flash memory cell to the data stack.
CODE 2,"l@"
IAT:
RCALL DOLIT
.DW NEWER
RCALL BUFQ :nanew?
RCALL QBRAN ;if a=new, fetch n in new_buf
.DW IAT1 .else, a=old?
RCALL DOLIT ;naaold
.DW OLDER
RCALL BUFQ ;naold?
RCALL QBRAN ;if a=old, fetch nin old_buf
.DW IAT2
movw zl, tosl .else, fetch from flash
Ipm tosl, z+
Ipm tosh, z+
RET
IAT1:
RCALL DOLIT
.DW NEWER
RIMP IAT3
IAT2:
RCALL DOLIT
.DW OLDER

IAT3:
RCALL BUFAT
RIMP AT

, IC@ (a-—-w)

Push flash memory byte to the data stack.
CODE 3/IC@"

112

ICAT:
RCALL
.DW
RCALL
RCALL
.DW
RCALL
.DW
RCALL
RCALL
.DW ICAT2
movw zl, tosl
clr tosh
Ipm tosl, Z
RET

ICAT1:

RCALL DOLIT
.DW NEWER
RIMP ICAT3

ICAT2:

RCALL DOLIT
.DW OLDER

ICATS:

RCALL BUFAT
RIMP CAT

DOLIT
NEWER
BUFQ
QBRAN
ICAT1
DOLIT
OLDER
BUFQ
QBRAN

;nanew?
;if a=new, fetch n in new_buf
.else, a=old?
:naaold

:naold?
;if a=old, fetch n in old_buf

:else, fetch from flash

1@ Fetch 16 bit data from a flash cell memory, whogte laddressa is on the

top of the parameter stack.
buffer.
data is in the@OLDbuffer.
switchNEWandOLDbuffers.

If true, fetch data frolNEWbuffer.
If true, fetch data fro@LDbuffer, and also

It first sees if tdag is in theNEWIlash
If not true, it then sees if thi

If no true, data is in flash memory, and

fetch it from flash memory directly. Cell memorgdressa is a byte
address.

IC@ Fetch 8 bit data from flash memory, whose byte estgdr is on the top of

the parameter stack.

It first sees if this daia iheNEWlash buffer. If

true, fetch data froMIEW\buffer.

If not true, it then sees if this datans

the OLDbuffer.

If true, fetch data fro@LDbuffer, and also switcRNEW

andOLDbuffers. If no true, data is in flash memory, d&eidh it from
flash memory directly.

;. CODE

BUFFER:
RCALL DOLIT
.DW $1
RCALL ANDD
RCALL QBRAN
.DW BUF 1
RCALL DOLIT
.DW BUF1
RET

BUF_1:
RCALL

6,"BUFFER" ; ptr -- buf

DOLIT

113

eI

.DW BUFO

RET
; CODE 6,"BUF?" ; anew/old -- f
BUFQ:

RCALL AT

RCALL OVER

RCALL XORR

RCALL DOLIT

.DW $7F80

RCALL ANDD

RET
;. CODE 6,"BUF@" ; a new/old -- buf_addr
BUFAT:

RCALL AT

RCALL BUFFER

RCALL SWAPP

RCALL DOLIT

.DW $7F

RCALL ANDD

RIMP XORR

BUFFER | Convert a buffer pointgutr to the address of the flash buffarf |
associated with the buffer pointer.

BUF? Determine whether the data at addr@s$s inside the buffer whose pointe
new/old is on the top of the parameter stack. It compBres14-7 in
the address and in the buffer pointer.

BUF@ | Convert the flash memory addres$o the corresponding address in the
buffer pointed to by the buffer pointeew/old on the top of the
parameter stack.

b (wa--)

; Store w to flash memory byte location.

CODE
ISTOR:
RCALL
.DW
RCALL
RCALL
.DW

RCALL
.DW
RCALL
RCALL
.DW

RCALL
.DW
RCALL
RCALL
.DW

2,
:a=new?
DOLIT
NEWER
BUFQ ;naanew._ptr
QBRAN ;if a=new, store n in new_buf
ISTORS else, a=old?

DOLIT ;naaold
OLDER

BUFQ ;naaold_ptr

QBRAN ;if a=old, switch ptrs, store n in new
ISTOR4 ;else, flush old_buf

DOLIT ;naold
OLDER

AT ;naold_ptr

DOLIT ;nadirty?
$8000

_buf

114

RCALL ANDD
RCALL QBRAN ;if not dirty, go read flash data into old_buf
.DW ISTOR2 else, flush old_buf to flash

ISTOR1:RCALL
ISTOR2:RCALL
ISTOR3:RCALL
ISTOR4:RCALL
ISTORS5:RIMP

CODE 5/

FLUSH_OLD:

FLUSH_OLD
READ_FLASH
UPDATE_OLD
SWITCH
UPDATE_NEW

'FLUSH" ; --

RCALL DOLIT ;old

.DW OLDER

RCALL AT ;old_ptr

RCALL DUPP ;old_ptr old_ptr

RCALL DOLIT

.DW $7F80

RCALL ANDD ;old_ptr flash_addr

RCALL DUPP ;old_ptr flash_addr flash_addr
RCALL ERASE ;old_ptr flash_addr

RCALL SWAPP ;flash_addr old_ptr
RCALL BUFFER ;flash_addr buf
RCALL SWAPP ;buf flash_addr
RIJMP WRITE

Store the datav in flash memory address

FLUSH_OLD

First erase the flash memory page corresponditigetpage stored if
OLDbuffer, and copy contents in td._Dbuffer to this page in flash
memory.

55.3 WritetoFlash

I! is the most interesting command in the flash mgntommand set, and needs a
more detailed explanation. Its action follows tbkow steps:

1. If the flash page addressedabis in theNEWbuffer, go to step 8.

2. If the flash page addressedais in theOLDbuffer, go to step 7.

3. If the flash page addressedais not in either buffer, test the Dirty Bit @LD

buffer pointer.

If the Dirty Bit is not set, go step 5.

4. OLDbuffer is dirty, flush its contents. Continuestep 5.

5. Read the flash memory page pointed to by addreso theOLDbuffer.

6. UpdateOLDbuffer pointer with the page address derived feom Clear the
Dirty Bit in OLDbuffer pointer.

7. Switch contents i@LDandNEWSso that thé©LDbuffer becomes the most
recently accessed buffer.

8. Write datav into NEWbuffer to the address correspondingf@nd set the Dirty
Bit in the NEWbuffer pointer.

This scheme of data buffering was first used bydBhoore in his implementation
of virtual memory to access data stored on magtegdes and on magnetic disks.
He divided all external storage media into block$@24 bytes and manage them

115

with buffers in RAM. His scheme minimized accessesxternal media and
achieved execution speed unheard of on computdhe @arlier eras.

; CODE 4"@OLD" ;a--a
READ_FLASH:read new flash data into old_buf
RCALL DOLIT ;aold
.DW OLDER
RCALL AT ;a old_ptr
RCALL BUFFER ;a buf
RCALL OVER ;abufa
RCALL DOLIT
.DW $7F80
RCALL ANDD ;a buf flash_addr
RCALL SWAPP ;aflash_addr buf
RJIMP READ ;a

; CODE 4/"IOLD" ;a--
UPDATE_OLD: ;preserve buf? bit
RCALL DUPP ;aa
RCALL DOLIT ;
.DW $7F80
RCALL ANDD
RCALL DOLIT
.DW OLDER ;apage_addrold
RCALL SWAPP ;aold page_addr
RCALL OVER ;aold page_addr old
RCALL AT ;aold page_addr old_ptr
RCALL DOLIT
.DW $1
RCALL ANDD ;a old page_addr buf?
RCALL ORR;aold updates old_ptr
RCALL SWAPP ;aold_ptrold
RIJMP STORE ;a

;apage_addr

;. CODE
SWITCH:
RCALL DOLIT ;old
.DW OLDER
RCALL AT ;old_ptr
RCALL DOLIT ;old_ptr new
.DW NEWER
RCALL AT ;old_ptr new_ptr
RCALL DOLIT ;old_ptr new_ptr old
.DW OLDER
RCALL STORE ;old_ptr
RCALL DOLIT ;old_ptr new
.DW NEWER
RJIMP STORE ;

6,"SWITCH" ; --

; CODE 4,"INEW" na--

UPDATE_NEW: ;write data to new buufer, set dirty bit
RCALL DOLIT ;na7e
.DW $7E
RCALL ANDD ;n disp
RCALL DOLIT ;ndisp new

.DW NEWER

116

RCALL AT ;n disp new_ptr
RCALL BUFFER ;n disp buf

UPDAT1I:

RCALL ORR ;n buff_addr
RCALL STORE ;update word in new_buf

RCALL DOLIT ;setdirty bit in newer
.DW NEWER

RCALL DUPP :newer newer
RCALL AT ;newer new_ptr
RCALL DOLIT

.DW $8000

RCALL ORR ;newer new_ptr_dirty
RCALL SWAPP

RIMP STORE ;new buf is dirty now

EMPTY-BUFFERS (--)
CODE 5,"FLUSH"

EMPTY_BUF:

RCALL EMPTY_OLD
RCALL SWITCH
RCALL EMPTY_OLD
RJIMP SWITCH

EMPTY_OLD ;flush old buffer if it is dirty

EMPTY_OLD:

RCALL DOLIT ;old

.DW OLDER

RCALL AT ;old_ptr

RCALL DUPP ;old_ptr old_ptr
RCALL DOLIT ;

.DW $8000

RCALL ANDD ;old_ptr dirty?
RCALL QBRAN ;if not dirty, exit
.DW EMPTY_1;else, flush old_buf

RCALL DOLIT ;old_ptr

.DW $7FFF

RCALL ANDD ;old_ptr, dirty bit cleared
RCALL DOLIT

.DW OLDER

RCALL STORE ;old_ptr flash_addr
RJIMP FLUSH_OLD

EMPTY_1:

RJIMP DROP

@OLD Read one page of the flash memory pointed to aeadaiinto the
OLDbuffer.

IOLD Update theDLDbuffer pointer so that it now had the page address
corresponding to flash memory addrass

SWTICH Exchange the contents NEWAndOLDbuffer pointers, so that the
OLDbuffer become8IEWthe most recently accessed buffer.

INEW Write new datavinto NEWbuffer at aa address corresponding to

117

flash memory address Set Dirty Bit inNEWbuffer pointer.

EMPTY_OLD | FlushOLDbuffer to flash memory if it is dirty.

FLUSH Flush both buffers back to flash memory.

5.5.4 Compiler Commands

The bootloader section in the flash memory of ATa8#8P has only 4 KB space,
which is not enough to host the entire 328eFortitesy. | only managed to squeeze
the text interpreter into the bootloader sectionAssembler now continues assembly
at flash memory byte address $200. The corretaddress is $100.

; Compiler

.org $100

; 1+ (a--a)
: Add 1 to address.

COLON 2,"1+"
ONEP:

adiw tosl,1

ret

; 1- (a--a)
: Subtract 1 from address.

COLON 2,71-"
ONEM:

shiw tosl,1

ret

; 2+ (a--a)
; Add cell size in byte to address.

COLON 2,"2+"
CELLP:

adiw tosl,2

ret

; 2- (a--a)

; Subtract cell size in byte from address.
COLON 2,72-"

CELLM:

shiw tosl,2
ret

;> (nl1n2--flag) Compare
; compares two values (signed)

COLON 1,">"

118

GREATER:
Id temp2, Y+
Id temp3, Y+

cp temp2, tosl
cpc temp3, tosh
rfmp DGRE1

; D> (dl1d2--flag) Compare
; compares two d values (signed)

COLON 2,"D>"
DGRE:

Id tempO, Y+

Id templ, Y+

Id temp2, Y+

Id temp3, Y+

Id temp4, Y+

Id tempb, Y+

cp temp4, tempO
cpc temp5, templ
cpc temp2, tosl
cpc temp3, tosh

DGRE1:
movw tosl,zerol
brit DGRE2

brbs 1, DGRE2
sbiw tosl,1
ret

DGREZ2:
ret

; D+ (d1d2--d3) Arithmetics
; add double cell values

COLON 2,"D+"
DPLUS:

Id temp2, Y+

Id temp3, Y+

Id temp4, Y+

Id tempb, Y+

Id temp6, Y+

Id temp7, Y+

add temp2, temp6

adc temp3, temp7

adc tosl, temp4

adc tosh, temp5

st -Y, temp3

st -Y, temp2

ret

; D- (dl1d2--d3) Arithmetics
;. subtract double cell values

COLON 2,"D-"
DMINUS:

Id temp2, Y+

Id temp3, Y+

Id temp4, Y+

119

Id
Id
Id
sub
shc
shc
shc
st
st

temp5, Y+

temp6, Y+

temp7, Y+
temp6, temp2
temp7, temp3
temp4, tosl
temp5, tosh

-Y, temp7

-Y, temp6

movw tosl, temp4

ret

1+ Increment the top item on the parameter stgck b

1- Decrement the top item on the parameter stack b

2+ Increment the top item on the parameter stgck b

2- Decrement the top item on the parameter stgck b

> Compare the top two items of the parameter stagleturn a true flag if the
second item is greater than the top item. Starkstare assumed to be
signed integers

D> Compare the top four items of the parametaiksés two signed double
integers. Return a true flag if the second doutikger is greater than the
top doble integer. Stack items are assumed taghed double integers

D+ Add the top four items of the parameter staxkwa signed double integers
Return a signed double integer sum.

D- Subtract the top four items of the parametacisas two signed double
integers. Subtract top double integer from th@sdaouble integer, and
return the difference as a signed double integer.

i ALLOT (n--)

Allocate n bytes to the code dictionary.

COLON 5,"ALLOT"
ALLOT:
CALL DPP

JMP PSTOR

. IALLOT (n-)

Allocate n bytes to the code dictionary.

COLON 6,"IALLOT"

IALLOT:
CALL CPP
JMP PSTOR
b (we)
; Compile an integer into the code dictionary.
COLON 1,""
COMMA:
CALL CPP
CALL AT
CALL DUPP

CALL CELLP ;cell boundary

120

CALL CPP
CALL STORE
JMP ISTOR

;call, (ca--)
;. Assemble a call instruction to ca.

; COLON 5,"call,”
CALLC:
CALL DOLIT
.DW CALLL

CALL COMMA
RIMP COMMA ;328 long call

; [COMPILE] (--; <string>)
; Compile the next immediate word into code diction

COLON IMEDD+9,"[COMPILE]"
BCOMP:

CALL TICK

RJIMP CALLC

; COMPILE (--)
; Compile the next address in colon list to code di

COLON COMPO+7,"COMPILE"

COMPI:
CALL RFROM
CALL DUPP
CALL AT

CALL COMMA ;compile call instruction
CALL CELLP

CALL DUPP

CALL AT

CALL COMMA ;compile address
CALL CELLP

CALL TOR
RET ;adjust return address
; LITERAL (w--)

; Compile tos to code dictionary as an integer lite

COLON 7,"LITERAL"

LITER:
CALL DOLIT
.DW DOLIT

CALL CALLC
RJIMP COMMA

» 8" ()
; Compile a literal string up to next " .

. COLON 3,¢'
; 'DB l,l’llll
STRCQ:
CALL DOLIT
Dw

CALL WORDD ;move string to code dictionary

ary.

ctionary.

ral.

121

o

t

CALL DUPP
CALL CAT
CALL TWOSL
CALL TOR

STRCQ1:

CALL DUPP
CALL AT
CALL COMMA
CALL CELLP
CALL DONXT
.DW STRCQL1
JMP DROP

ALLOT Allocatsn bytes of RAM memory on bottom of the free RAM spac
System variabl®P points to the bottom of free RAM space.

IALLOT Allocaten bytes of flash memory on the top of the dictionary
System variabl€P points to the top of the dictionary.

; It is the most primitive compiler command. It cdtep an integew
to dictionary in the flash memory, and add the itew to the growing
command list of the current command under constmct This is the
primitive compiler upon which the FORTH compilest®

CALL, Compile or assemble a subroutoadl instruction with the code field
address on the parameter stack as destination. p@ord commands
are compiled as lists of subroutine calls.

[COMPILE] | Compile the code field address of the next comniartie input
stream. Itis used to compile commands, which datiherwise be
executed while compiling.

COMPILE | Compile the code field address of the next commaurtlde input
stream. It forces compilation of a command attmme.

LITERAL Compile an integer literal. It first compilecall doLIT machine
instruction, followed by an integer value from fherameter stack.
WhendoLIT is executed, it extracts the integer in the neggmam
word and pushes it on the parameter stack.

$" Compile a string literal. String text is takieam the input stream an
terminated by a double quote. A token (such'as or$"|) must
be compiled before the string to form a sting &ter

?UNIQUE | Display a warning message to show that the nanaenefv command
is the same as a command already in the dictionary.

$,n Build a new header in the dictionary usingribene string already
packed in th&VORDbuffer. Fill in the link field with the address in
LAST. The top of the dictionary is now the code fiefchanew
command, ready to accept commands and tokens.

$COMPILE | Process a string at and compile a new token, a call instruction hie
dictionary. This dictionary pointer i@P is incremented, and is ready
compile the next token.

OVERT Link a new command to the dictionary and endlkavailable for a

dictionary searchOVERTchangesCONTEXTo point to the name fiel
of this new command, and extends the dictionarynctwainclude a
new command.

122

: Terminate a compound command. Compifeta instruction to
terminate a token list. Link this command to thetidnary, and changg
the text interpreter to interpreting mode.

1%

] Activate compiling mode by writing the addresss@fOMPILEinto
system variabléEVAL .

Create a new compound command. Take the neut stpng to build
new header. Now, its code field is on top of thenowand dictionary,
and is ready to accept new tokens.

555 Structure Commands

Immediate commands are not compiled as tokenseogdmpiler. Instead, they are
executed by the compiler immediately. They ara@ueéduild control structures in
compound commands. Immediate commands has its IMMEE lexicon bit set,

in the length byte of the name field. The constolictures used in 328eForth are the
following:

Conditional branch IF ... THEN
IF ... ELSE ... THEN
Finite loop FOR ... NEXT
FOR ... AFT ... THEN... NEXT
Infinite loop BEGIN ... AGAIN
Indefinite loop BEGIN ... UNTIL
BEGIN ... WHILE ... REPEAT

A control structure contains one or more addresesalis with ?branch, branch and
next commands, which causes execution to brancbfdbe normal sequence. The
control structure commands are immediate commaimishveompile the address
literals and resolve the branch address.

One should note th&EGIN andTHENdo not compile any token. They set up or
resolve control structures in compound commands., ELSE, WHILE, UNTIL, and
AGAIN do compile address literals with branching tokens.

| use two charactews andA to denote some addresses on the data stacgoints to
a location to where a branch commands would jump £opoints to a location where
a new address will be stored when the addressadve.

., Structures

; BEGIN (--a)
Start an infinite or indefinite loop structure.

COLON IMEDD+5,"BEGIN"
BEGIN:

CALL CPP

JMP AT

; FOR (--a)
; Start a FOR-NEXT loop structure in a colon defini tion.

123

COLON IMEDD+3,"FOR"

FOR:

CALL DOLIT
.DW TOR

CALL CALLC
RJIMP BEGIN

: NEXT a-)

Terminate a FOR-NEXT loop structure.

COLON IMEDD+4,"NEXT"

NEXT:

CALL DOLIT
.DW DONXT
CALL CALLC
CALL TWOSL
RJIMP COMMA

UNTIL (a--)
Terminate a BEGIN-UNTIL indefinite loop structure

COLON IMEDD+5,"UNTIL"

UNTIL:

CALL DOLIT
DW QBRAN
CALL CALLC
CALL TWOSL
RIMP COMMA

AGAIN (a--)
Terminate a BEGIN-AGAIN infinite loop structure.

COLON IMEDD+5,"AGAIN"

AGAIN:
CALL DOLIT
.DW BRAN

CALL CALLC
CALL TWOSL
RJIMP COMMA

BEGIN | Start a loop structure. It pushes an addaess the parameter stacka
points to the top of the dictionary where new takeuill be compiled. If
begins an infinite loop or an indefinite loop.

FOR Compile a>R token and pushes the address of the next tal@anthe
parameter stack. It start$@R-NEXTloop.

NEXT | Compile anext token with a target addreason the top of the paramete
stack. It resolves BOR NEXTloop.

UNTIL | Compile a?branch token with a target addreason the top of the
parameter stack. It resolve8BGIN-UNTIL loop.

AGAIN | Compile abranch token with a target addreason the top of the
parameter stack. It resolve8BGIN-AGAIN loop.

=

124

D IF (—-A)
; Begin a conditional branch structure.

COLON IMEDD+2,"IF"
IFF:

CALL DOLIT

DW QBRAN

CALL CALLC

CALL BEGIN

CALL DOLIT

DW 2

RIMP IALLOT

; AHEAD (--A)
; Compile a forward branch instruction.

; COLON IMEDD+5,"AHEAD"

AHEAD:
CALL DOLIT
.DW BRAN

CALL CALLC
CALL BEGIN
CALL DOLIT
.DW 2

JMP IALLOT

; REPEAT (Aa--)
; Terminate a BEGIN-WHILE-REPEAT indefinite loop.

COLON IMEDD+6,"REPEAT"
REPEA:

CALL AGAIN

CALL BEGIN

CALL TWOSL

CALL SWAPP

JMP ISTOR

; THEN A --)
: Terminate a conditional branch structure.

COLON IMEDD+4,"THEN"
THENN:

CALL BEGIN

CALL TWOSL

CALL SWAPP

JMP ISTOR

; AFT (a--alA)
; Jumpto THEN ina FOR-AFT-THEN-NEXT loop the firs

COLON IMEDD+3,"AFT"
AFT:

CALL DROP

CALL AHEAD

CALL BEGIN

JMP SWAPP

. ELSHA-A)

ttime through.

125

Start the false clause in an IF-ELSE-THEN structu re.

COLON IMEDD+4,"ELSE"
ELSEE:

CALL AHEAD

CALL SWAPP

JMP THENN

. WHILE (a--Aa)

; Conditional branch out of a BEGIN-WHILE-REPEAT lo op.
COLON IMEDD+5,"WHILE"

WHILE:
CALL IFF

JMP SWAPP

IF Compile a?branch address literal and pushes its addrasss left on
the parameter stack. It startiFaELSE-THEN or alF-THEN branch
structure.

AHEAD | Compile abranch address literal and pushes its addrasss left on the
parameter stack. It starte\elEAD-THENoranch structure.

REPEAT| Compile abranch token with a target addreason the top of the
parameter stack. It resolve8BGIN-WHILE-REPEAT loop.

THEN Resolve the address in a branch token whose add@ss the top of the
parameter stack. It resolve$FaELSE-TEHN orIF-THEN branch
structure.

AFT Compile abranch literal and leaves its addressAqdt also replaces the
address left by FORwith the addresal of the next token. A will be
used by THEN to resolve tie=T-THEN branch structure, arall will be
used byNEXTto resolve the loop structure.

ELSE Compile abranch token, and use the address of the next tokerstive
the address field dfbranch token ina, as left byiF . It also replaces
a with A, the address of its address field T(tENto resolve. ELSE
starts the false clause in tHeELSE-THEN branch structure.

WHILE | Compile a?branch token and leave its address,on the stack.
Addressa left by BEGIN is swapped to the top of the parameter stack.
WHILE is used to start the true clause in B#EGIN-WHILE-REPEAT
loop.

; ABORT" (--; <string>)
Conditional abort with an error message.

COLON IMEDD+6,"ABORT"
DB ™
ABRTQ:
CALL DOLIT
DW ABORQ
CALL CALLC
CALL STRCQ
RET

126

7 $" (- <string>)
; Compile an inline string literal.

COLON IMEDD+2,'$'

.DB
STRQ:
CALL
.DW
CALL
CALL
RET

DOLIT

STRQP
CALLC
STRCQ

;" (- <string>)
; Compile an inline string literal to be typed out at run time.

COLON IMEDD+2,"

.DB
DOTQ:
CALL DOLIT
.DW DOTQP
CALL CALLC
CALL STRCQ
RET
ABORT" | Compile an error message as a string literal. &hisr message is

display at run time if the top item on the paramsteack isrue , and the
rest of the tokens in this compound command argpski and eForth
enters the interpreter loop @UIT. This is the programmed response
an error condition.

Compile a string literal which will be printedhen it is executed in run
time. This is the best way to present messaggsuan an application.

Compile a string literal. When it is executed]y the address of the
string is pushed on the parameter stack. Latentamds can use this
address to access the string and individual chersaat the string as a
string array.

5.5.6 Name Compiler

We had seen how tokens and structures are compitethe code field of a
compound command in the dictionary. To build a mewmand, we have to build
its header first. A header consists of a linkdiahd a name field. Here are the
commands to build the header.

;; Name compiler

; JUNIQUE (a--a)
; Display a warning message if the word already exi sts.

; COLON 7,"2UNIQUE"

UNIQU:

127

to

CALL DUPP
CALL NAMEQ ;?name exists
CALL OBRAN
.DW UNIQ1
CALL DOTQP ;redefinitions are OK
.DB 7," reDef ";but the user should be warned
CALL OVER
CALL COUNT
CALL TYPES ;justin case its not planned
UNIQ1:
JMP DROP
; $,n(na--)
; Build a new dictionary name using the string at n a.
; COLON 3,"$,n"
SNAME:
CALL DUPP
CALL CAT ;?null input
CALL QBRAN
.DW SNAM2
CALL UNIQU ;?redefinition
CALL LAST
CALL AT
CALL COMMA ;compile link
CALL CPP
CALL AT
CALL LAST
CALL STORE ;save new nfain LAST
CALL DUPP
CALL CAT
CALL TWOSL ;na count/2
CALL TOR
SNAMEL:
CALL DUPP
CALL AT
CALL COMMA ;compile name
CALL CELLP
CALL DONXT
.DW SNAME1
JMP DROP
SNAM2:
CALL STRQP
.DB 5, name" ;null input
JMP ERROR
?UNIQUE | Display a warning message to show that the nanaenefv command
already exists in the dictionary. FORTH does mevpnt your reusing
the same name for different commands. Howevemgithe same
name to many different commands often causes prbile software
projects. Itis to be avoided if possible &@WNIQUEreminds you of
it.
$,n Build a new header with a name string at RAM adglnes It first
build a link field with an address pointing to th@me field of the prior

128

command, and then copies the stringato build a name field. The
top of dictionary is the code field of the new coamd, and tokens can
be compiled.

5.5.7 FORTH Compiler

;; FORTH compiler

; $COMPILE (a--)
; Compile next word to code dictionary as a token o r literal.

; COLON 8,"$COMPILE"
SCOMP:
CALL NAMEQ
CALL QDuUP :?defined
CALL QBRAN
.DW SCOM2

CALL IAT
CALL DOLIT
.DW IMEDD

CALL ANDD ;?immediate
CALL QBRAN

.DW SCOM1
JMP EXECU
SCOM1:

CALL TWOSL
JMP CALLC
SCOM2:
CALL NUMBQ
CALL QBRAN
.DW SCOM3
JMP LITER
SCOMS:
JMP ERROR error

; OVERT (-)
; Link a new word into the current vocabulary.

; COLON 5,"OVERT"

OVERT:
CALL LAST
CALL AT

CALL CNTXT
JMP STORE

v ()

: Terminate a colon definition.

COLON IMEDD+COMPO+1,""

SEMIS:
CALL DOLIT
.DW RETT

CALL COMMA
CALL LBRAC
JMP OVERT

129

$COMPILE | Build the token list of a new compound commandsrcode field,
which is on the top of the dictionary. It takestang addresa on the
top of the parameter stack, search dictionary fimaéching command,
and adds a token to the token list. If the stréngot a valid
command, it is converted to a number, and a intitgeal added to the
token list. If the string is not a number, abbd tompilation process
and return to the text interpreter loopQRJIT. If the string is the
name of an immediate command, this command iserapded, but
executed immediately. Immediate commands are tes#d by the
compiler to build structures in compound commands.

OVERT Link a new command to the dictionary andstinakes it available for
dictionary searches. When a new header is bislshame field
address is stored in system varidbfST, and it is not yet linked to th
dictionary which starts &ONTEXT OVERT copies the name field
address iLAST to CONTEXTand links the new command to the
dictionary. Itis used to protect the dictionaoytsat new commands
not compiled successfully will not be compiled inmetly into later
compound commands.

; Terminate a new compound command. It compiletn machine
instruction to terminate the new token list, likés new command to
the dictionary, and then returns to the text intetgr by storing the
code field address INTERPRET into system variabl&VAL .

1 ()

; Start compiling the words in the input stream.

COLON 1,7"
RBRAC:
CALL DOLIT

.DW SCOMP*2
CALL TEVAL
JMP STORE

;o (- <string>)

; Start a new colon definition using next word as i ts name.
COLON 1"
COLONN:

CALL TOKEN
CALL SNAME
JMP RBRAC

; IMMEDIATE (--)
; Make the last compiled word an immediate word.

COLON 9,"IMMEDIATE"

IMMED:
CALL DOLIT
.DW IMEDD
CALL LAST
CALL AT

130

CALL
CALL
CALL
CALL

IAT
ORR
LAST
AT
JMP ISTOR

Turn the text interpreter to a compiler by stgrihe code field
address o$COMPILEiInto system variabl&VAL ..

Create a new header and start a new compounthaath It takes
the following string in the input stream to be tieme of the new
command. The dictionary is ready to accept a tdisen] turns
the text interpreter into compiler, which will coitgthe following
text strings to build a new compound command. dwe
compound command is terminated;hy

IMMEDIATE

Set the immediate lexicon bit in theame field of the new command
When the compiler encounters a command with thisdij it will not
compile this words into the token list under coustion, but execute
it immediately. This bit allows structure commanad$uild special
structures in compound commands, and to deal \petial
conditions when the compiler is running.

5.5.8 Defining Commands

Defining commands are molds which can be usedeaterclasses of commands
which share the same run time execution behavilor328eForth, we have these
defining commands: , CREATECONSTANBNAVARIABLE.

;; Defining words

; CREATE (--; <string>)
; Compile a new array entry without allocating code space.

COLON 6,"CREATE"

CREAT:
CALL TOKEN
CALL SNAME
CALL OVERT

CALL DOLIT

.DW DOVAR
CALL CALLC
CALL DPP
CALL AT

JMP COMMA

; CONSTANT

(n--; <string>)

; Compile a constant.

COLON 8,"CONSTANT"

CONST:
CALL
CALL
CALL

TOKEN
SNAME
OVERT

131

CALL DOLIT

.DW DOVAR
CALL CALLC
JMP COMMA

; VARIABLE (--; <string>)
; Compile a new variable uninitialized.

COLON 8,"VARIABLE"
VARIA:

CALL CREAT

CALL DOLIT

.DW 2

JMP ALLOT

EQU LASTN = LINK*2;last name address in name dic tionary

EQU DTOP = $140 ;nextavailablememoryinnamedic tionary
EQU CTOP = pc*2 ;nextavailablememoryincodedic tionary
CREATE Create a new data array in RAM memory withadlocating memory.

When commands created GREATHSs executed, they will push the
respective RAM addresses on the parameter staclemdvl space of
an actual array is allocated usiABLOT command.

-

VARIABE Create a new command witldaVARtoken followed by a pointer to
RAM memory and allocate 2 bytes of space in RAM mmgm When
a variable commands is executed, it pushes the Rddiless on the
parameter stack.

CONSTANT | Create a new command witidaVAR token followed by the constant
value. When a constant command is executed, itgauthe constant
value on the parameter stack.

6. Conclusions

What | give you in 328eForth is that in 5156 bytgs) have a programming language,
an interactive operating system, and all the deimggimols to develop applications on
Arduino Uno, for Arduino Uno. The complete souccele of 328eForth.asm is only
54 Kbytes long, comparing to 232 MB hogged by Andud022. It is an organic
system, which can grow to accommodate any appbicdtiat ATmega328P
microcontroller can host. It allows you to readitsl CPU and 1/O registers, and all
its data and program memories. It also allowstgochange the 1/O registers and
memories, and to add new commands to the flash mem8y adding new

132

commands, you can extend the 328eForth systemualadabnew system which will
do what you want it to do.

In 328eForth, | try to reduce the FORTH languaggstbare minimum, so that you
can learn this programming language quickly, ands®it to do useful work.
ATmega328P, like all the newer microcontrollersikmde now, contains many
powerful and complicated I/O devices, and it tatkesAVR Data Book 566 pages to
explain them. With 328eForth, you can examinehall/O registers and modify
them to make the 1/0 devices work the way you whein to work. There is no
better way to study the AVR Data Book than to rdeedbook along with 328eForth,
modifying the 1/O registers and observe what tkedévices do. 328eForth is a
worthy companion to the AVR Data Book.

Arduino Uno is an excellent platform for FORTH. [RTH allows you to develop
substantial applications quickly and produce highliqy code. You write

commands in small modules which can be tested ativaly. Fully tested
commands can be used to build more powerful commantigher conceptual levels,
until the last command, which becomes the appboati This last command can be
used to configure a turnkey system, so that it mellexecuted when the system boots
up. You can do all these things with 328eFortiiaduino Uno.

FORTH is a programming paradigm very different froomventional programming
languages and operating systems. It can be embadtdea small microcontroller,
and empowers you to make the best use of the timmésources available in a
microcontroller. | hope you will learn this pargdi and enjoy these benefits:

Integrated operating system and programming laggoa a small chip

Interactive command interpreter

Incremental compilation of new commands

Bottom up coding and debugging

Naturally structured programming

Ready access to memory and I/O registers

Ease in building turnkey applications

In explaining how this system is constructed, estep in the way, | hope to lay to
rest these myths, that computers are complicabgyr@mming languages are
complicated, and operating systems are complicatédl.these things can be very
simple, and can be understood by ordinary peopleoaginary engineers. If you
understand this 328eForth system completely, tidenstanding can be carried over
to any computer and microcontrollers.

People using computers are trained to be slavesu ake taught to push certain
buttons, and your are taught to push certain keyfien, you get employed to push
buttons and keys to work as slaves. Computergy@noming languages, and
operating systems are made complicated to enskEvge

Computers are not complicated beyond comprehensiBrogramming languages

and operating systems do not have to be complicatédou get a sharp knife, you
can be the master of your destination. 328eFsrthsharp knife. Go use it.

133

Appendix 328eForth Commands

Stack Comments:

Stack inputs and outputs are shown in the fornpuiib input2 ... -- outputl output2 ...)
Stack Abbreviations of Number Types

flag Boolean flag, either O or -1
char ASCII character or a byte
n 16 bit number

addr 16 bit address

d 32 bit number

Sack Manipulation Commands

?DUP (n--nn|0) Duplicate top of stack ifstriot 0.
DUP (n1 -- n2) Duplicate top of stack.
DROP (n--) Discard top of stack.
SWAP (n1 n2 --n2 nl) Exchange top two stack items.
OVER (n1 n2 --nln2nl) Make copy of second itemstack.
ROT (n1 n2n3--n2n3 Rotate third item to top.
nl)
PICK (n--nl) Zero based, duplicate nth item to.{@.g. 0 PICK is DUP).
>R (n--) Move top item to return stack for temgugrstorage.
R> (--n) Retrieve top item from return stack.
R@ (--n) Copy top of return stack onto stack.
2DUP (d--dd) Duplicate double number on tojstatck.
2DROP (d1d2--) Discard two double numbers onabgtack
DEPTH (--n) Count number of items on stack.

Arithmetic Commands

+ (n1 n2 -- n3) Add nl1 and n2.

- (n1 n2 -- n3) Subtract n2 from nl (n1-n2=n3).

* (n1 n2 -- n3) Multiply. n3=n1*n2

/ (n1 n2 -- n3) Division, signed (n3= n1/n2).

1+ (n -- n+1) Increment n.

1- (n--n-1) Decrement n.

2+ (n -- n+2) Add two to n.

2- (n --n-2) Subtract two from n.

2* (n -- n*2) Logic left shift.

2/ (n --n/2) Logic right shift.

UM+ (n1 n2 -- nd) Unsigned addition, double premisresult.
UmM* (n1 n2 -- nd) Unsigned multiply, double precisiresult.
M* (nn--d) Signed multiply. Return double prad.

UM/MOD | (nd nl -- mod quot)

Unsigned division witbuble precision dividend.

M/MOD (dn--mod quot)

Signed floored divideaduble by single. Return mod and
guotient.

MOD (n1 n2 -- mod) Modulus, signed (remainder ofn2).
/MOD (n1 n2 -- mod quot) Division with both remaardand quotient.
*MOD (n1 n2 n3 -- n4 n5) Multiply and then divida1*n2/n3)

*/ (n1 n2 n3 -- n4) Like */MOD, but with quotienindy.

ABS (n1 -- n2) If n1 is negative, n2 is its twotsngplement.
NEGATE (n1 -- n2) Two's complement.

MAX (n1 n2 -- n3) n3 is the larger of n1 and n2.

MIN (n1 n2 -- n3) n3 is the smaller of n1 and n2.

WITHIN (n1 n2 n3 -- flag)

Return true if nl is withrange of n2 and n3. (n2 <= nl < n3

DNEGATE | (d1 -- d2)

Negate double number. Two's complement.

D+ (d1 d2 -- d3) Add double numbers.
D- (d1 d2 -- d3) Subtract double numbers.
D- (d1 d2 --d3) Subtract double numbers.

134

L ogic and Comparison Commands

AND (n1 n2 -- n3) Logical bit-wise AND.

OR (n1 n2 -- n3) Logical bit-wise OR.

XOR (n1 n2 -- n3) Logical bit-wise exclusive OR.

INVERT (n1 -- n2) Bit-wise one's complement.

0< (n -- flag) True if n is negative.

U< (n1 n2 -- flag) True if nl less than n2. Unsidm®mpare.

< (n1 n2 -- flag) True if nl less than n2.

= (n1 n2 -- flag) True if n1 equals n2.

> (n1 n2 -- flag) True if n1 greater than n2.

D> (d1 d2 -- flag) True if d1 greater than d2.

RAM Memory Commands

@ (addr -- n) Replace addr by number at addr.

C@ (addr -- char) Fetch least-significant byte only

! (n addr --) Store n at addr.

C! (char addr --) Store least-significant byteyonl

+! (n addr --) Add n to number at addr.

COUNT (addrl -- addr+1 Move string count from memory onto stack.
char)

ALLOT (n--) Add n bytes to the RAM pointer DP.

HERE (-- addr) Address of next available RAM meynlorcation.

PAD (-- addr) Address of a scratch area of attléddytes.

TIB (-- addr) Address of terminal input buffer.

CMOVE (addrl addr2 n --) Move n bytes startingnamory addrl to addr2.

FILL (addr n char --) Fill n bytes of memory atdadvith char.

Flash M emory Commands

@ (addr -- n) Replace addr by number at flash nrgraddr.

IC@ (addr -- char) Fetch a byte from flash mematgra

! (n addr --) Store n at flash memory addr.

ICOUNT (addrl -- addr+1 Move string count from flash memory onto stack.

char)

IALLOT (n--) Add n bytes to the flash memory pteEnCP.

ITYPE (addrn --) Display a string of n characterflash starting at address addr.

READ (addrl addr2 --) Read 128 bytes from flasimmey addrl to RAM memory
addr2.

WRITE (addrl addr2 --) Write 128 bytes from RAMmary addrl to flash memory
addr2.

ERASE (addr --) Erase an 128 byte page in flasimong at addr.

FLUSH (--) Write modified flash buffers back tagh memory.

System Variables

'BOOT (-- addr) Contain address of application owand to boot.

BASE (-- addr) Contain radix for number conversion

TMP (-- addr) Temporary scratch pad

SPAN (-- addr) Contain actual number of charaateceived by EXPECT
>IN (-- addr) Contain character offset into thpuhstream buffer.

#TIB (-- addr) Contain current length of termiigbut buffer (TIB).

'TIB (-- addr) Contain current address of terminglut buffer (TIB)
'EVAL (-- addr) Contain interpreter or compilerdgaluate a command.
HLD (-- addr) Contain pointer to numeric stringden construction.
CONTEXT | (-- addr) Contain name field address of last comuhia dictionary
CP (-- addr) Contain first free address in flastnmory

DP (-- addr) Contain first free address in RAM nagyn

LAST (-- addr) Contain name field address of comchander compilation

Terminal Input-Output Commands

135

EMIT (char --) Display char.

KEY (-- char) Get an ASCII character from the kegid.

?KEY (--char-1|0) Return an ASCII charactenfrthe keyboard and a true flag.
Return false flag if no character available.

. (n--) Display number n with a trailing blank.

U. (n--) Display an unsigned integer with a irajlblank.

R (n1n2--) Display signed number n1 right jfisti in n2 character field.

U.R (n1n2--) Display unsigned number n1 riglstified in n2 character
field.

? (addr --) Display contents at memory addr.

<# (--) Start numeric output string conversion.

(n1 -- n2) Convert next digit of number and aoldtitput string

#S (n--) Convert all significant digits in n tatput string.

HOLD (char --) Add char to output string.

SIGN (n--) If n is negative, add a minus sigrHe output string.

#> (xd -- addr n) Terminate numeric string, leavatglr and count for TYPE.

CR (-) Display a new line.

SPACE (-) Display a space.

SPACES (n--) Display n spaces.

EXPECT (addrn --) Accept n characters into buéfeaddr.

CHAR (-- char) Parse next command and returnirgs ¢haracter.

TYPE (addr n --) Display a string of n characteterting at address addr.

BL (--32) Return ASCII Blank character.

DECIMAL | (--) Set number base to decimal.

HEX (--) Set number base to hexadecimal.

Compiler and Interpreter Commands

:<name> () Begin a colon definition of <name>.

; (--) Terminate execution of a colon definition.

CREATE (--) Dictionary entry with no parameter field spaeserved.

<name>

VARIABL (--) Defines a variable. At run-time, <name> legaits address.

E <name>

CONSTAN | (n--) Defines a constant. At run-time, n is left the stack.

T <name>

, (n--) Compile n to the dictionary in flash memo

IMMEDIA | (--) Cause last-defined command to execute evinaa colon

TE definition.

COMPILE | (--) <name> is compiled to dictionary.

<name>

[COMPILE | (--) Immediate command <name> is compiled toiginztry.

] <name>

LITERAL (n--) Compile literal number n. At runrtie, n is pushed on the stack.

[(-) Switch from compilation to interpretation.

] (-) Switch from interpretation to compilation.

WORD«<tex | (char -- addr) Get the char delimited string <tefkom the input stream and

t> leave as a counted string at addr.

(comment) | (--) Ignore comment text.

\comment | (--) Ignore comment till end of line.

S <text>" (--) Compile <text> message. At rumé display text message.

.(<text>) (-) Display <text> from the input sam.

$" <text>" | (-- addr) Compile <text> message. Atdtime return its address.

ABORT" (flag --) Compile <test> message. At run-time tigpmessage and

<text>" abort if flag is true. Otherwise, ignore message @mtinue.

COLD () Start eForth system.

QUIT (--) Return to interpret mode, clear datd agturn stacks.

QUERY (-) Accept input stream to terminal infbuiffer.

NAME> (addrl -- addr2) Traverse name field at adaldl return code field address

136

addr2.

NUMBER?

(addr--n-1|addr
0)

Convert a number string to integer. Push a flagpsn

EXECUTE | (addr --) Execute command definition at addr.

@EXECU | (addr --) Execute command definition whose executiddress is in
TE addr.

EXIT (--) Terminate execution of a colon defipiti.

Compiler Sructure Commands

IF (flag --) If flag is zero, branches forwardE& SE or THEN.

ELSE (--) Branch forward to THEN.

THEN (--) Terminate a IF-ELSE-THEN structure.

FOR (n--) Setup loop with n as index. Repeat Inof times.

NEXT (--) Decrement loop index by 1 and branchkom FOR. Terminate
FOR-NEXT loop when index is negative.

AFT (--) Branch forward to THEN in a loop to skipe first round

BEGIN (--) Start an indefinite loop.

AGAIN (--) Branch backward to BEGIN.

UNTIL (flag --) Branch backward to BEGIN if flag ifalse. If flag is true,
terminate BEGIN-UNTIL loop.

WHILE (flag --) If flag is false, branch forward terminate
BEGIN-WHILE-REPEAT loop. If flag is true, continue
execution till REPEAT.

REPEAT (--) Resolve WHILE clause. Branch backwar8EGIN.

Utility Commands

' <name> (-- addr) Look up <name> in the dictign&eturn execution address.
WORDS (--) Display all eForth commands

DUMP (addr --) Dump 128 bytes of RAM memory stagtirom addr.

IDUMP (addr --) Dump 128 bytes of flash memoryrtitgy from addr.

.S (-) Dump the parameter stack.

137

