jeforth, the Simplest Forth in JavaScript
Chen-Hanson Ting

Forth is a very simple and very powerful programming language. Chuck Moore invented it in the 1960s. In the 1970s he programmed the minicomputers in many astronomy observatories and caused the International Astronomy Society to adopt it as the standard language for observatory automation. In 1978, the Forth Interest Group was formed to promote its use in the then-popular microcomputers. As PC got more memory and disk storage, conventional operating systems and programming languages became wide-spread, the usage of Forth declined and is now restricted to smaller microcontrollers.

With the advances in Internet and JavaScript for web page programming, it is interesting to see whether we can get Forth back to the main stage of web page programming by hosting it on JavaScript. HTML5 provides a friendly graphic user interface to an underlying Virtual Forth Machine. jeforth is such an implementation. Because of the expressiveness of JavaScript, the Forth Virtual Machine is very simple and it consists of two small text files: jeforth614.html defining the graphic user interface, and jeforth614.js containing the Forth Virtual Machine. It should run on any modern browser, although I only tested it on Google Chrome.

This jeforth system was originally written by Mr. Cheahshen Yap and Mr. Sam Chen in the Taiwan Forth Interest group around 2010-2011. I polished up the code so that all Forth words were self-sufficient objects. It now has a pretty user interface worthy of the Internet. To demonstrate that substantial programs can be developed in this Forth system, I ported a lot of Bach’s organ compositions over, from an early electronic organ I built on a classic IBM PC in the 1980s. The source code was about 900K bytes.
Chapter 1. Running jeforth614
Unpacking jeforth614
Unzip jeforth614.zip to a folder somewhere on your PC. You have to have all the files shown in the following picture. The most crucial JavaScript file jeforth614.js.txt must be renamed jeforth614.js. The txt extension was added because Gmail blocks all JavaScript file, suspecting that they may contain viruses.

After naming jeforth614.js properly, double click jeforth614.html gets you started.

[image: image1.png]= |

GO-M » Computer » Local Disk (C) » F# » jeforth » ting614

<[4][Searcnt.. £

Organize ~ Includeinlibrary ~ Sharewith = Bum New folder - O e

). ting613 Name Date modified Type
). ting614 R
W ting63 & eforth100jpg 2021/2/19 T4 12.. JPEG image

i
B "9633 E) jeforth614.doc 2021/2/24 T4 09.. DOC File

i

" @ jeforth614htm! 2021/5/7 £4F 09:44 Chrome HTML Do.
1 BradNelsonzip

2 jeforthe14js 2021/5/7 £4 1006 IScript Script File
"1 OneWordJavascriptEforth-r
lessons614.txt 2021/5/7 £4F 09:47 Text Document

1 project-k-master.zip
). jeforth-master

). jhonHarbold

js_bach

IncRNA

log

mito_others
mitochondria

5 items

ﬁﬁﬁﬁﬁﬁ

m

Running jeforth614
Double click jeforth614.html to start jeforth, that is a version of Forth coded in JavaScript. jeforth614.html sets up a web page like what is shown in the following picture. On this page, there are 4 boxes that let you operate the underlying Forth Virtual Machine. On the left-hand side, a logo box is shown on the top on a light green background. Underneath is an input box in white color. At the bottom left, there is the output box in light pink color. To the right is a text box showing 20 lessons to exercise this Forth system.

The logo shows that a black ‘e’ and a white ‘e’ embrace each other like Ying and Yang. That’s how eForth works, and that’s how jeforth works.

[image: image2.png]' @ jeforth6.14 x +

C @ File | C/F%23/jeforth/ting614/jeforth614.html s [SIECIE N B

Apps G Google mw IndextoTexts&Tr.. @ YouTube-Brosdca.. B AZZFEM-5. O sR-TEZ=M W £IAZA » Reading list

(Lessons)

(There are 20 lessons to learn using this Forth
system)

(' Try typing these lessons into the input box and
run them.)

In input box, enter text and hit return key:

(Hit return to run this small demo.) (You can copy a lesson and paste it into the input
: square dup * ; box.)
: quad square square ; (You can copy the entire file and run all lessons.
: octet quad quad ;)
8 octet . 4 octet . (Try these commands:)

(words show all commands in the

dictionary)

A (date show current date and time)

Jeforth 6.14 (see <name> disassemble a command)

(reboot remove all added commands)

(forget <name> remove all commans after <name>)

(eforth system tests)

Dtestl1 12345 ;
: test2 if 1 else 2 then .

: test3 10 for r@ . next ;

: testd 10 for aft r@ . then next ;

test5 10 begin dup . dup while 1 - repeat drop ;
test6 1000000 for next ; (80 ms)

: test7 100 for test6 next ;

(date test7 date)

(lesson 1. the universal greeting)

In the white input box, there is a short demo program:

(Hit return to run this small demo.)

: square dup * ;

: quad square square ;

: octet quad quad ;

8 octet . 4 octet .

Move your cursor over the input box and select it. The border of this box darkens showing it is under focus. Now, hit the return key to run this demo. You will get two huge numbers in the pink output box. Please verify them as 8^8 and 4^8. Big numbers are impressive.

This demo does not do much. It demonstrates how Forth defines a new function based on existing functions.

The commands ‘dup *’ takes a number and multiply it by itself. A new command square replaces these two commands. Another command quad executes square twice and takes a number to its 4th power. The last new command octet executes quad twice and takes a number to its 8th power.

[image: image3.png]' @ jeforth6.14 x +

C @ File | C/F%23/jeforth/ting614/jeforth614.html s [SICIE 3 O H

Index to Texts & Tr.. @ YouTube - Broadca... AETHER-5.. O SR-FERSA W KIKkXR »

Apps G Google Reading list

(Lessons)

(There are 20 lessons to learn using this Forth
system)

(' Try typing these lessons into the input box and
run them.)

In input box, enter text and hit return key:

(You can copy a lesson and paste it into the input
box.)
(You can copy the entire file and run all lessons.
)
(Try these commands:)
(words show all commands in the
dictionary)
A (date show current date and time)
Jetorth 6.14 (see <name> disassemble a command)
(Hit return to run this small demo.) : square (reboot rermre allll aehled] eE—Entk)
(forget <name> remove all commans after <name>)

dup * ; : quad square square ; : octet quad
quad ; 8 octet . 4 octet . 281474976710656

4294967296 < >ok (eforth system tests)

Dtestl1 12345 ;
: test2 if 1 else 2 then . ;

: test3 10 for r@ . next ;

: testd 10 for aft r@ . then next ;

: testS 10 begin dup . dup while 1 - repeat drop ;
: test6 1000000 for next ; (80 ms)

: test7 100 for test6 next ;

(date test7 date)

(lesson 1. the universal greeting)

Please read the lessons in the right yellow text box. Select the text of a lesson. Copy it and paste it into the white input box. Hit return to run it and verify the results in the pink output box.

For the brave souls out there, select the entire lessons file. Copy it and paste it into the white input box. Hit return to run all 20 lessons. After a few seconds, all 20 lessons are run and you get the new page like this:

[image: image4.png]' @ jeforth6.14 x +

C @ File | C/F%23/jeforth/ting614/jeforth614.html s [SIECIE N B
Apps G Google v IndextoTexts &Tr.. @ YouTube-Broadca.. DM AZRFEM-5. § SA-FEZSA W SIKIH »

Reading list

(Lessons)

(There are 20 lessons to learn using this Forth
system)

(Try typing these lessons into the input box and
run them.)

In input box, enter text and hit return key:

(You can copy a lesson and paste it into the input
box.)
(You can copy the entire file and run all lessons.
)
(Try these commands:)
(words show all commands in the
dictionary)
A (date show current date and time)
T ST K 107 107 107 T 123 23 123 . (see <name> disassemble a command)
, 444444 <6060 60 L 76 76 76 \ 92 (reboot remove all added commands)
92 92 1108 108 108 | 124 124 124 (forget <name> remove all commans after <name>)
- 454545 =61 6161 M777777 193
93 93 m 109 109 109 } 125 125 125 (eforth system tests)
46 46 46 > 62 62 62 N 78 78 78~ 94
94 94 n 110 110 110 ~ 126 126 126 fEmEl L 2345
/ 47 47 47 2 63 63 63 0797979 _ 95 F s O A eler 2w - o
95 95 o 111 111 111 127 127 127 f 5B IR 6 - [B
N B :es:: 15 tf)or_af; r@ .dthenhr_‘;xtl; —
s : tes egin dup . dup while 1 - repeat drop ;
BREEEE : test6 1000000 for next ; (80 ms)
EmaE : test7 100 for test6 next ;
EXEatE (date test7 date)

IFIEERIFE < 0 0 >ok - |
«

lesson 1. the universal greeting)

What you see in the pink output box are the results from Lesson 15 and Lesson 18. Scroll up the output box window to see the results produced by other lessons. On the small 100x100 pixel canvas at the top left corner of this page, you will see the result of a Haiku picture called ‘4spire’ contributed by Brad Nelson. Read Lesson 20 and draw some other Haikus youself.

Read Lesson 19 and play a few songs. Read other lessons to learn more about this very simple yet powerful Forth programming language.

The white input box looks plain and unimpressive. However, you can cut and paste a large amount of text into it and get the Forth system to execute it. You can scroll the window up and down to see its contents. You can also do some light editing before executing them. The same for texts in the output box and in the right text box.

Chapter 2. jeforth614.html

jeforth614.html builds a web page for a Forth Virtual Machine programmed in JavaScript. Modern Forth needs a modern interface to let users explore this wonderful programming language on a web enabled laptop computer.

Header

The header specifies UTF-8 character set so that we can use Chinese characters in a demo lesson. We also need the Courier New mono-space font to emulate an old-fashion CRT monitor many Forth programmers were accustomed to.
Jeforth614.js is then loaded to run the Forth Virtual Machine.

<!DOCTYPE html>

<html><head>

<meta http-equiv="content-type"content="text/html;charset=UTF-8">

<title>jeforth6.14</title>

<style>body{font-family:'Courier New',monospace;font-size:14px;}

 </style>

<script src="jeforth614.js"></script>

</head>

Body

In the body part of the HTML file, we allocate a 800x500 pixel window for user interface. This window is partitioned into two equal parts. The left half is further divided into three parts vertically. The top third is used to host a small 100x100 pixel canvas, and a logo image. The middle part is used to send input text to the Forth Virtual Machine to evaluate or to interpret. On boot-up, this windows displays a short demo program. Select this window with mouse and hit return to run this small demo. The bottom third is used as a log window, displaying messages send from the Forth Virtual Machine to this web page.

(Hit return to run this small demo.)

: square dup * ;

: quad square square ;

: octet quad quad ;

8 octet . 4 octet .

The demo program produces two huge numbers in the log window. They are 8 to the 8th power and 4 to the 8th power. Big numbers are impressive.
The right half of the window is used to display information about this Forth system. It is currently used to display lesson614.txt file, that contains 20 lessons, showing you hao to use jeforth to write Forth programs and applications. You can select the text of a lesson, copy it and paste it into the input window. Run the lesson by hitting the return key.
<div> tags are used to create the window and its partitions.

<body>

<div id="all" style="height:500px;width:800px;overflow:hidden;">

 <div id="left" style="float:left;height:100%;width:50%;">

 <div id="top" style="float:left;height:25%;width:100%;

 background-color:#f0f8f0;">

 <canvas id="cv" width=100 height=100></canvas>

 <img id="logo" width="200" height="100" src="eforth100.jpg"

 class="center">

In input box, enter text and hit return key:

 </div>

 <div id="mid" style="float: left;height:25%; width:100%;

 background-color:#f0f0f8;">

 <textarea id="tib" style="float:left;height:95%;width:95%;"

 onkeydown="if (13===event.keyCode) forth()">

(Hit return to run this small demo.)

: square dup * ;

: quad square square ;

: octet quad quad ;

8 octet . 4 octet .

 </textarea>

 </div>

 <div id="log" style="overflow:auto;height:50%; width:100%;

 background-color:#f8f0f0;"></div></div>

 <div id="lessons" style="float: left;height:100%; width:50%;

 background-color:#f8f8f0;">

 <h3 style="text-align: center;">(Lessons)</h3>

 <embed type="text/html" src="lessons614.txt"

 width="400" height="500">

 </div>

</div>

</body>

Script

The following <script> section has JavaScript code to initialize the Forth Virtual Machine in jeforth, and run it by sending the program text through the input window.

Before running The Forth Virtual Machine, the script initializes the AudioContext to play music, and a canvas context to draw pictures in a small canvas. In the audio context, 6 oscillators are also initiated. The oscillators are connected to an amplifier which is connected to the speaker in the PC.

The script sends text in the input buffer to the main() routine in jeforth614.js. When The Forth Virtual Machine is done with processing the text, it sends back an ‘ok’ message. The script then stops all the oscillators and waits for the user to send the next text in the input buffer. If The Forth Virtual Machine encountered any problem, it throws an error which will be catched in the try-catch-finally construct.
<script>

 var AudioContext=window.AudioContext||window.webkitAudioContext;

 var canvas=document.getElementById("cv");

 var context=canvas.getContext("2d");

 var imagedata=context.createImageData(100,100);

 var log=document.getElementById("log");

 log.innerHTML="jeforth 6.13
";

 var tib=document.getElementById("tib");

 function forth() {

 audio=new AudioContext();

 amp=audio.createGain();

 amp.connect(audio.destination);amp.gain.value=0.1;

 osc1=audio.createOscillator();

 osc2=audio.createOscillator();

 osc3=audio.createOscillator();

 osc4=audio.createOscillator();

 osc5=audio.createOscillator();

 osc6=audio.createOscillator();

 osc1.connect(amp);osc1.type="square";osc1.frequency.value=0;osc1.start();

 osc2.connect(amp);osc2.type="square";osc2.frequency.value=0;osc2.start();

 osc3.connect(amp);osc3.type="square";osc3.frequency.value=0;osc3.start();

 osc4.connect(amp);osc4.type="square";osc4.frequency.value=0;osc4.start();

 osc5.connect(amp);osc5.type="square";osc5.frequency.value=0;osc5.start();

 osc6.connect(amp);osc6.type="square";osc6.frequency.value=0;osc6.start();

 log.innerHTML+=""+tib.value+" ";

 try{main(tib.value);}

 catch(err){logtype(err.toString()+"
");}

 finally{tib.value="";log.scrollTop=log.scrollHeight;

 osc1.stop();osc2.stop();osc3.stop();

 osc4.stop();osc5.stop();osc6.stop();}

 }

 function logtype(t){log.innerHTML=log.innerHTML+t;} //

</script>

</html>
Chapter 3. jeforth614.js

The kernel of jeforth was developed by Mr. Cheahshen Yap in Taiwan FIG, in 2010. He handed it to Sam Chen to implement the whole eForth system with a few graphic demos. The jeforth kernel was only about 100 lines of JavaScript code. Forth words are defined as objects collected in an array words[]. The inner interpreter and the out interpreter were coded as functions accessing Forth words as objects. With the very expressive JavaScript engine behind it, A Forth Virtual Machine was implemented with minimal code and overhead.

Sam Chen came to SVFIG and presented it in one of our meetings. At the time, I was totally absorbed in designing Forth chips on FPGA, and did not spend enough time to understand jeforth. I did not realize its significance until I was exposed to objects in Python, and felt that we need a web-ready Forth Virtual Machine for the huge body of netizens.

Brad Nelson enlightened us with a beautiful web page controlling an ESP32 chip running esp32eforth through WiFi. He showed the proper way for a PC to communicate with a WiFi-enabled robot. I did not understand his browser, but appreciated his browser, controlling the robot prototype through a web page on my PC.

I thought that we could use a web page to run a Forth Virtual Machine on PC, in the absence of a robot. The web page could be written in HTML, that calls the Forth Virtual Machine programmed in JavaScript. Then I remembered that jeforth was already developed in JavaScript.

I dug up jeforth and this time with Python wrapped in my head for some time, Yap’s Forth objects started to make sense. It was a good place to start learning JavaScript, as I had yet written 0 lines of JavaScript.

The most important thing I learned is that Forth words are objects that can be used to build a very simple and very powerful Forth Virtual Machine with a very small amount of code.

I had complained loudly that C did not allow me to build a Forth dictionary with variable-length name fields and variable-length parameter fields. Eventually, I wrote a Forth in C that built a Forth dictionary at runtime after the C program started to run. Now, the objects in JavaScript are very flexible and can be designed to host Forth words and a Forth dictionary. Yap’s jeforth clearly demonstrated how a Forth system could be coded in JavaScript with Forth words as objects.

Yap designed two fields in a Forth object: a name field and a code field xt, The code field contains a function for a primitive word or a pointer to a token list in a dictionary. Forth word objects are collected in an array words[]. A Forth word object in words[] array was accessed sequentially by a token which is the index of this word object in the array words[].

The dictionary was packed with word objects. A primitive Forth word is referenced by its token or’ed with a bit in $40000000. A primitive Forth word is executed by executing the function in its xt field. A colon world was executed by executing a token list in the dictionary, starting at a location stored in the xt field.

The inner interpreter executes the token lists recursively. An outer interpreter processes text sent from the web page in a tib (terminal input buffer) input box. Both the inner interpreter and the outer interpreter were tightly wrapped in a function exec(tib).

My thinking was that the Forth word objects should be constructed more uniformly, and they should contain all the information for all their operations. Each word object should contain a name field, a code field xt, and a parameter field pf, like those in a traditional Forth word. The link field is not necessary, because all word objects are elements of the words[] array, and can be accessed by a sequential token. Yap used an additional field to hold an immediate flag for immediate words. This optional field was included in my design.

The code fields should contain only JavaScript functions. Word objects are executed by running the executable functions in the code fields. All Forth words are executed by the instruction words[index].xt(). All primitive words execute their own functions. Colon words executed a function nest() in their code fields. nest() is the inner interpreter that interprets a token list stored as an array in the parameter field. words[token].pf[]. nest() executes the token list recursively and allows indefinite levels of nesting.

As each colon word has its own token list, there is no need to reference external token lists in a dictionary as in Yap’s design.

Forth Words are Objects

A Forth word is defined as an object in the words[] array. A word object may contain 5 fields:

· A name field, with a name string;

· A code field xt, with an executable function;

· An optional parameter field pf, with a token list required by a colon word;

· An optional data field qf, with data for variables, constants and arrays; and

· An optional immediate flag field, with a true flag to signify an immediate word.

In jeforth614, six types of workds are used:

· Primitive words which execute JavaScript functions.

· Colon words which executes token lists.

· Constants which return values on stack.

· Variables which return tokens of values.

· Arrays which return tokens of arrays of values.

· Does words which define classes of words which execute custom interpreters in the forms of token lists using data stored in the data fields.

	Object Fields
	Name Field
	Code Field
	Token Field
	Data Field
	Immediate Field

	Primitive words
	name
	function()
	
	
	optional

	Colon words
	name
	nest()
	token list
	
	optional

	Constant
	name
	docon(),
	
	data
	

	Variable
	name
	dovar()
	
	data
	

	Array
	name
	dovar()
	
	data array
	

	Does words
	name
	nest()
	token list
	data array
	

System Variables

Following is the list of variables used in jeforth. The variables in JavaScript are very flexible. They hold numeric data, strings, objects, arrays, and stacks. Data type in a variable can change dynamically.
	ip
	Instruction pointer, pointing to a token to be executed next

	wp
	Word pointer, pointing to the word object holding a token list under execution

	w
	‘Who am I’ word pointer, pointing to the word object under execution

	stack
	Parameter stack or data stack

	rstack
	Return stack

	tibb
	Terminal input buffer

	ntibb
	Pointing to the character in tib currently being interpreted

	base
	Current base for numeric conversions

	idiom
	A character string just parsed out of tib to be interpreted

	compiling
	A flag indicating that the interpreter is compiling a new word

	fence
	Pointing to the last word in the dictionary. It prevent ‘forget’ to trim the dictionary below this word.

	newname
	The name of the word currently being compiled.

	words
	The Forth dictionary. It is a giant array of word objects shown in next section

In jeforth, a word refers to a word object, that has a name field, a code field, an optional parameter field, an optional data field, and an optional immediate flag field. Word objects are collected in a dictionary, that is a giant array of word objects named words[]. The index of a word in the words[] array is called a token. A word is known externally by its name, and internally by its token.

On boot-up, all word objects except the first one are primitive words, that have only a name field and a code field. The first word quit in the dictionary is a colon word, that has an optional parameter field with a short token list. Most new words compiled after booting are colon words with a token list in its parameter field.
A Forth program is generally a text file with a list of character strings separated by white space characters, similar to an essay in English. An outer interpreter or a text interpreter processes or interprets this list of character strings by parses out the character strings, that are called idioms. If an idiom has a matching name in a word object, it becomes a valid word with a token. The interpreter may execute this token or may compile the token into a token list for later execution, depending on whether the interpreter is in an interpreting mode or in a compiling mode. The idiom may be a number, and the interpreter may push the number on the parameter stack, or compile it as a literal in a token list for later stack operations, depending on the mode of the interpreter. The idiom may also be a string, to be used by words which process strings.
/* jeforth 6.14

07may21cht 6.14 minimized
/* jeforth 6.14
19feb21cht 6.13 see, dump, to, is, evaluate
11feb21cht 6.03 jsBach, qf, q@, does

25jan21cht 5.03 one AudioContext, 6 voices polypohny

18jan21cht 4.01-4.03 haiku eforth

08jan21cht 3.01-3.02 colon words have token lists in pf.

07jan21cht 2.01-2.03 execute-nest-exit, quit loop

2011/12/23 initial version by Cheahshen Yap and Sam Chen */

 var ip=0,wp=0,w=0; // instruction and word pointers

 var stack=[],rstack=[]; // array allows push and pop

 var tibb="",ntibb=0,base=10;

 var idiom="";

 var compiling=false;

 var fence=0;

var newname; // for word under construction
The Inner Interpreters
The Forth outer interpreter processes, interprets, or evaluates a list of idioms, like:

idiom1 idiom2 synonum3 idiom4 …

Within a list, there are often colon definitions like:

: name idiom1 idiom2 synonum3 idiom4 …;

The command ‘:’ turns the interpreter into a compiler, which compiles a new word name with a token list, terminated by a ‘;’ command. When the colon word name is later executed, its token list is executed by an inner interpreter. In a token list, many tokens may belong to other colon words. The inner interpreter can process deeply nested lists.

The outer interpreter parses strings or idioms out of an input buffer and looks them up in the dictionary. If an idiom matches the name of a word in the dictionary, a token is returned. A token is the index of this word object in the dictionary, that is a giant array of word objects words[].

Let me repeat in very precise terms. The dictionary words[] is an array of word objects. Each word object has two required fields: a name field containing a character string as its name, and a code field xt containing an executable function. A word may have three optional fields: a parameter field pf containing a token list for a colon word; a data field qf containing numeric data for constants, variables, and arrays; and an immediate field containing a flag signifying an immediate word. The input buffer contains a list of idioms. The parser parses out idioms sequentially. If an idiom matches the name of a word object in the dictionary, it is identified as a word. The index of this word object in the array words[] is called a token. Words are represented externally by their names, and internally by their tokens. The Forth outer interpreter interprets a list of idioms. The Forth inner interpreter interprets token lists.
Sam Chen coded both the outer and inner interpreters in JarvaScript, greatly simplified Forth, and turned it into jeforth. Here are all the functions defined for the inner interpreter.

	parse(delimit)
	Scan the characters in tib from ntib forward until the next delimiting character delimit. It returns the parsed string in a variable idiom. If it reaches the end of tib, when all characters in tib are exhausted, it throws a message to HTML web page that displays the contents of the parameter stack. Forth is done with tib. It waits the HTML web page to send the next block of characters to tib.

	find(name)
	Look up the idiom name parsed out of tib, to see if it is a valid word in the dictionary. It returns a token for a valid word in the dictionary. It returns a -1 if none of the words have this name.

	dictcompile(n)
	Compile n into the parameter field of the current word being compiled, extending its token list.

	compilecode(nword)
	If nword is a word, find its token in the dictionary and compile the token, If nword is not a valid word, throw a ‘?’ error.

	exec(n)
	Execute word with token n by jumping into it xt field and execute the code in xt.

	exit()
	Terminate executing a token list by forcing a -1 into the variable ip. It actually terminates the infinite loop in next().

	next()
	This is the inner interpreter of token lists. It first pushes wp and ip on the return stack and then starts to process the token list in the parameter field pf of this colon word. It continues processing this list until exit() forces a -1 into ip and terminates the infinite loop.

	evaluate()
	Process idiom just parsed out. If idiom is a token, execute it if compiling is false, but compile it otherwise. If idiom is not a token, convert it to a number. The number is pushed on the parameter stack if compiling is false, otherwise compile the number as a literal. If idiom is not a token nor a number, throw a ‘?’ error.

	dovar()
	The inner interpreter of a variable or an array.

	docon()
	The inner interpreter of a constant

	tick()
	Parse the next idiom in tib. If it is a word, return its token. Otherwise, throw a ‘?’ error.

	main(cmd)
	Entry point of Forth. cmd is a string passed from the input box in HTML. It is used to initialized tib. The rstack is cleared. Other system variables are initialized. It then executes the word quit at the beginning of the dictionary. quit is the Forth outer interpreter..

	sleep(ms)
	Delay ms milliseconds.

	poly
	Start 6 oscillators in the AudioContext fo play a 6 voice chord for ms milliseconds

 var ip=0,wp=0,w=0; // instruction and word pointers

 var stack=[],rstack=[]; // array allows push and pop

 var tibb="",ntibb=0,base=10;

 var idiom="";

 var compiling=false;

 var fence=0;

 var newname; // for word under construction

 function parse(delimit){

 idiom="";

 if (delimit===undefined) delimit=" ";

 while (tibb.charCodeAt(ntibb)<=32) ntibb++;

 while(ntibb<tibb.length && tibb.substr(ntibb,1)

 !=delimit && tibb.substr(ntibb,1)!="\n")

 {idiom+=tibb.substr(ntibb++,1);}

 if (delimit!=" ") ntibb++;

 if (idiom==="") throw(" < "+stack.join(" ")+" >ok");

 return idiom;}

 function find(name) {

 for (i=words.length-1;i>=0;i--)

 {if (words[i].name===name) return i;}

 return -1;}

 function dictcompile(n) {words[words.length-1].pf.push(n);}

 function compilecode(nword) {

 if (typeof(nword)==="string"){var n=find(nword);}

 else n=nword;

 if (n>-1) dictcompile(n);

 else {stack=[]; throw(" "+nword+" ? ");}}

 function exec(n){w=n;words[n].xt();}

 function exit(){ip=-1;}

 function nest(){ // inner interpreter

 rstack.push(wp);rstack.push(ip);wp=w;ip=0;

 while (ip>=0){w=words[wp].pf[ip++];words[w].xt();}

 ip=rstack.pop();wp=rstack.pop();}

 function evaluate(){ // interpreter/compiler

 var n=parseFloat(idiom); // convert to number

 var nword=find(idiom);

 if (base!=10) {n=parseInt(idiom,base);}

 if (nword>-1) {

 if (compiling && !words[nword].immediate)dictcompile(nword);

 else {exec(nword);}} // nest, docon, dovar need pf

 else if (n || idiom==0) { // if the idiom is a number

 if (compiling) {

 compilecode("dolit"); // compile an literal

 dictcompile(n); }

 else {stack.push(n);}}

 else {

 if (compiling) words.pop();// error, delete defective word

 stack=[];throw(" "+idiom+" ? ");}}

 function dovar(){stack.push(w);}

 function docon(){stack.push(words[w].qf[0]);}

 function tick(){idiom=parse();var i=find(idiom);

 if(i>=0)stack.push(i);

 else throw(" "+idiom+" ? ");}

 function main(cmd) {tibb=cmd;ntibb=0;

 rstack=[];wp=0;ip=0;w=0;compiling=false;exec(0);}

jeforth614.html sets up an audio context to make noises. When jeforth614.html sends some text to jeforth for execution, a new audio context is created and is ready to generate up to 6 channels of square waves:

poly() is used to build a primitive Forth word poly to be used in Forth programs to execute poly(). A delay loop sleep(ms) to give a 6 voice chord enough time to finish.
// audio

 function sleep(ms){var d=Date.now();var n=0;

 do {n=Date.now();} while (n-d < ms);}

 function poly(vol,bass,tenor,alto,soprano,pedal,flute,ms){

 amp.gain.value=vol;

 osc1.frequency.value=bass;

 osc2.frequency.value=tenor;

 osc3.frequency.value=alto;

 osc4.frequency.value=soprano;

 osc5.frequency.value=pedal;

 osc6.frequency.value=flute;

 sleep(ms);}
The Outer Interpreter

As mention briefly before, the Forth dictionary is a giant array words[] with all the primitive Forth words defined in JavaScript, except the first word quit, which is actually the Forth outer interpreter. The inner interpreter nest() is always processing a token list. There must be a list to start with. So, I coded the word quit at the beginning of the words[] array as a colon word. Its token is a 0. When quit is executed, the function nest() in its code field is executed, and interprets the token list [1,2,3,0] in its parameter field. This token list would have been produced by the following Forth program

: quit begin token exec again

As you can see in the words[] array, parse has a token of 1, evaluate has a token of 2, and branch hs a token of 3. The 0 following token 3 (branch) is the address of parse at the beginning of the token list. The list elements [3,0] means branching back to parse.

	quit
	(--) Outer interpreter

	parse
	(--) Prarse out next idiom in input buffer tib

	evaluate
	(--) Process parsed idiom

	branch
	(--) Branch to following address

// word objects

 var words = [

 {name:"quit" ,xt:function(){nest();},pf:[1,2,3,0]}

 ,{name:"parse" ,xt:function(){idiom=parse();}}

 ,{name:"evaluate",xt:function(){evaluate(idiom);}}

 ,{name:"branch",xt:function(){ip=words[wp].pf[ip];}}

jsforth614.html web page has a tib (terminal input buffer) input box to accept text entered into this box. The text in tib is passed to main() in jeforth to be processed by the quit command, words[0], at the beginning of words[] array. quit is a high-level colon word with a token list [1,2,3,0]. It is an infinite loop, executing parse (words[1]), evaluate (words[2]) and branch (words[3]). branch jumps back to 0 where parse sits at the beginning of this token list and thus forms an infinite loop.

The token list [1,2,3,0] is a beautiful example of Forth programming. I think it is the best Forth program I ever wrote.
The essence of Forth is that it can be extended by defining new colon words to replace lists of existing words. New colon words are compiled by the outer interpreter, that pushes new Forth word objects on the words[] array. A colon word object has a token list in its parameter field. The Forth inner interpreter nest() recursively processes these lists.

When The Forth Virtual Machine is running, it is always in the middle of a token list, processing or executing tokens in sequence. When it encounters a primitive word, the function in the code field xt is executed. When a colon word is encountered, nest() is executed to pull in another token list while the current list pointers wp and ip are pushed on the return stack. A token list is always terminated by a token exit, that unnests the current list and return to the list whose pointers were saved on the return stack.

Stacks

In JavaScript, all objects have push() and pop() methods. We can push new word object on the words[] dictionary. We can push new tokens on a token list. We can push new data on the qf[] array. We can of course implement the classic parameter stack and return stack common to all Forth systems.
A parameter stacks is defined by a variable stack[] and a return stack is defined by a variable rstack[]. Items are pushed on the parameter stack by stack.push(item), and are popped off by item=stack.pop().

When the stack[] is empty, a stack.pop() instruction causes a system error that will be caught in the jeforth614.htnl inside the forth() function.

The entire contents of the parameter stack stack[] are displayed when the outer interpreter successfully finishes processing all the text passed to it in the terminal input buffer tib. This way you can always see the entire stack, and it is the best way to observe how things are going. Programming problems always reveal themselves when unexpected results showing up on the parameter stack.

When jeforth614 encounter an error, it always clears the parameter stack before throwing an error message ‘?’ back to the HTML web page. If you have to clear the data stack, the easiest way is typing some gibberish like xxx and forcing a ‘?’ error.

In JavaScript, a stack can grow indefinitely. The system most likely crashes without warning when a stack overflows. JavaScript does watch over the stack underflow condition and throws an error and returns to the HTML web page. However, the error message it throws up is often cryptic as it accesses unpredictable data under the stack.

There are many different ways to implement parameter stack words. I found that the array methods slice() and splice() especially attractive. As shown in the source code, stack words that preserve the stack contents are best implemented with slice(). When stack contents are changed, splice() is a better choice.
	dup
	(a -- a a) Duplicate tos

	over
	(a b -- a b a) Duplicate 2nd tos item

	2dup
	(a b -- a b a b) Duplicate top 2 items of tos

	4dup
	(a b c d -- a b c d a b c d) Duplicate top quad tos items

	swap
	(a b -- b a) Swap two tos items

	rot
	(a b c -- b c a) Rotata 3rd tos item to top

	-rot'
	(a b c -- c a b) Rotate tos to 3rd position

	2swap
	(a b c d -- c d a b) Swap two pairs of tos items

	2over
	(a b c d -- a b c d a b) Duplicate second pair tos items

	pick
	(i -- a) Copy ith tos item to top

	roll
	(i -- a) Roll ith tos item to top

	drop
	(a --) Discard tos

	nip
	(a b -- a) Discard 2nd tos item

	2drop
	(a b --) Discard two tos items

	>r
	(a --) Push tos to return stack

	r>
	(-- a) Pop return stack to tos

	r@
	(-- a) Duplicate top of return stack to tos

	push
	(a --) Push tos to return stack. Same as >r.

	pop
	(-- a) "Pop return stack to tos. Same as r>,"

// stacks

 ,{name:"dup" ,xt:function(){stack=stack.concat(stack.slice(-1));}}

 ,{name:"over" ,xt:function(){stack=stack.concat(stack.slice(-2,-1));}}

 ,{name:"2dup" ,xt:function(){stack=stack.concat(stack.slice(-2));}}

 ,{name:"2over" ,xt:function(){stack=stack.concat(stack.slice(-4,-2));}}

 ,{name:"4dup" ,xt:function(){stack=stack.concat(stack.slice(-4));}}

 ,{name:"swap" ,xt:function(){stack=stack.concat(stack.splice(-2,1));}}

 ,{name:"rot" ,xt:function(){stack=stack.concat(stack.splice(-3,1));}}

 ,{name:"-rot" ,xt:function(){stack.splice(-2,0,stack.pop());}}

 ,{name:"2swap" ,xt:function(){stack=stack.concat(stack.splice(-4,2));}}

 ,{name:"pick" ,xt:function(){

 j=stack.pop()+1;stack.push(stack.slice(-j,-j+1));}}

 ,{name:"roll" ,xt:function(){

 j=stack.pop()+1;stack.push(stack.splice(-j,1));}}

 ,{name:"drop" ,xt:function(){stack.pop();}}

 ,{name:"nip" ,xt:function(){stack[stack.length-2]=stack.pop();}}

 ,{name:"2drop" ,xt:function(){stack.pop();stack.pop();}}

The return stack is used by the Forth inner interpreter nest() to save the current word pointer wp and the current instruction pointer ip. Its operations are mostly hidden from you. However, it is a convenient place to save a few parameters on the parameter stack, when there are too many items pushed on it, and you have to get down deeper. Remember to pop off all the items you pushed on the return stack before a colon work is finished. Leaving things on the return stack is a very easy way to crash a Forth Virtual Machine.

The for-next looping mechanism also uses the return stack to store the loop index. In a for-next loop, use r@ to get the current loop index.

 ,{name:">r" ,xt:function(){rstack.push(stack.pop());}}

 ,{name:"r>" ,xt:function(){stack.push(rstack.pop());}}

 ,{name:"r@" ,xt:function(){stack.push(rstack[rstack.length-1]);}}

 ,{name:"push" ,xt:function(){rstack.push(stack.pop());}}

 ,{name:"pop" ,xt:function(){stack.push(rstack.pop());}}

Numbers and Math
JavaScript used floating-point numbers exclusively. jeforth adapted to this environment smoothly and let JavaScript handle all the numbers and their operations.

As jeforth adopts floating numbers from JavaScript, it inherits all the Math operations in JavaScript. All transcendental functions are thus leveraged.

JavaScript interprets strings starting with numeric characters like numbers and ignores subsequent non-numeric characters. jeforth identifies 2drop as a valid Forth word. It interprets 3drop as number 3 because 3drop is not a valid Forth word. Therefore, avoid starting a Forth name with numerals.

jeforth bitwise logic operations, (and, or, xor), are also handled by JavaScript. The numbers are first converted to 32-bit integers and the bitwise logic operations are performed. The 32-bit results are converted back to floating numbers and pushed back on the parameter stack.

	+
	(a b -- c) Add two tos items

	-
	(a b -- c) Subtract tos from 2nd item

	*
	(a b -- c) Multiply two tos items

	/
	(a b -- c) Divide 2nd item by tos

	mod
	(a b -- c) Modulus 2nd item by tos

	and
	(a b -- c) Bitwise AND of two tos items

	or
	(a b -- c) Bitwise OR of two tos items

	xor
	(a b -- c) Bitwise XOR of two tos items

	negate
	(a -- b) Negate tos

// math

 ,{name:"+" ,xt:function(){stack.push(stack.pop()-(0-stack.pop()));}}

 ,{name:"-" ,xt:function(){b=stack.pop();stack.push(stack.pop()-b);}}

 ,{name:"*" ,xt:function(){stack.push(stack.pop()*stack.pop());}}

 ,{name:"/" ,xt:function(){b=stack.pop();stack.push(stack.pop()/b);}}

 ,{name:"mod",xt:function(){b=stack.pop();stack.push(stack.pop()%b);}}

 ,{name:"and",xt:function(){stack.push(stack.pop() & stack.pop());}}

 ,{name:"or" ,xt:function(){stack.push(stack.pop() | stack.pop());}}

 ,{name:"xor",xt:function(){stack.push(stack.pop() ^ stack.pop());}}

 ,{name:"negate",xt:function(){stack.push(0-stack.pop());}}

Logic words and, or, and xor return true or false flags. When the flags are used in subsequent numeric operations, true is interpreted as 1 and false is interpreted as 0.

Comparison commands generally return true or false flags. When a flag is used in arithmetic commands, a true flag acts like a 1 and a false flag acts like a 0.
	0=
	(a -- f) Return true if a=0

	0<
	(a -- f) Return true if a<0

	0>
	(a -- f) Return true if a>0

	=
	(a b -- f) Return true if a=b

	>
	(a b -- f) Return true if a>b

	<
	(a b -- f) Return true if a<b

	<>
	(a b -- f) Return true if a is not equal to b

// compare

 ,{name:"0=" ,xt:function(){stack.push(stack.pop()===0);}}

 ,{name:"0<" ,xt:function(){stack.push(stack.pop()<0);}}

 ,{name:"0>" ,xt:function(){stack.push(stack.pop()>0);}}

 ,{name:"=" ,xt:function(){stack.push(stack.pop()===stack.pop());}}

 ,{name:">" ,xt:function(){b=stack.pop();stack.push(stack.pop()>b);}}

 ,{name:"<" ,xt:function(){b=stack.pop();stack.push(stack.pop()<b);}}

 ,{name:"<>" ,xt:function(){stack.push(stack.pop()!==stack.pop());}}
Number Output

hex and decimal switch number conversion radix to hexadecimal and to decimal. The radix base is not directly accessible in jeforth. However, the command base! can change the radix base ranging from 2 to 36. jeforth shows all numbers correctly with integers. With fractional floating-point numbers, do expect strange-looking numbers displayed when not in the decimal radix.

jeforth always displays the entire contents on the parameter stack, it is generally not necessary to display numbers with special commands. To help you format numbers in a table, the .r command is preserved. It displays a number in columns of the specified width.
	base@
	(-- a) Return current base

	base!
	(a --) Make a the current base

	hex
	(--) Change to hexadecimal base

	decimal
	(--) Change to decimal base

	cr
	(--) Display a carriage return

	.
	(a --) Display number a on tos

	.r
	(a n --) Display a in n columns

	emit
	(a --) Display an ASCII character

	space
	(--) Display a space

	spaces
	(n --) Display n spaces

// output

 ,{name:"base@" ,xt:function(){stack.push(base);}}

 ,{name:"base!" ,xt:function(){base=stack.pop();}}

 ,{name:"hex" ,xt:function(){base=16;}}

 ,{name:"decimal",xt:function(){base=10;}}

 ,{name:"cr" ,xt:function(){logtype("
\n");}}

 ,{name:"." ,xt:function(){logtype(stack.pop().toString(base)+" ");}}

 ,{name:".r" ,xt:function(){

 n=stack.pop();logtype(stack.pop().toString().padStart(n," "));}}

 ,{name:"emit" ,xt:function(){

 s=String.fromCharCode(stack.pop());logtype(s);}}

 ,{name:"space" ,xt:function(){s=" ";logtype(s);}}

 ,{name:"spaces",xt:function(){

 n=stack.pop();s="";for(i=0;i<n;i++)s+=" ";logtype(s);}}

Literals
Character strings are very important data type for a program to communicate with you. Error messages, appropriate warnings and suggestions can be displayed dynamically to help you using the system in a friendly way. Character strings are compiled in the colon words as string literals. Each string literal consists of a string token that uses the next token to store the string as an object or a string literal. It is similar to a number literal that is a dolit token followed by a token converted to a number object. This special JavaScript property allowing items in a list or array to be used as objects makes it very easy to construct token lists with embedded string and number literals.

This is a good place to mention that a token list generally contains tokens. However, other types of objects can be embedded in a token list. They are number literals, address literals, and string literals.

A number literal is a token dolit followed by a number object. An address literal is an address token like branch, 0brach, and donext, followed by an address. A string literal is a string toen like dostr and dotstr, followed by a string object. Since the token list has a very simple and uniform structure, it can be decompiled very easily, as shown later in the see command.

	[
	(--) Change to interpreting mode

]
	(--) Change to compiling mode

	find
	(-- w) Return token of next idiom

	'
	(-- w) Return token of next idiom outside colon idiom.

	(')
	(-- w) Return token of next idiom inside colon idiom.

	[']
	(-- w) Return token of next compiled string while compiling.

	dolit
	(--) Push next token on stack

	dostr
	(-- w) Return token of next string

	"s"""
	(-- w) Compile next idiom as a string literal

	dotstr
	(--) Display next compiled string

	"."""
	(--) Compile next idiom as a string literal for display

	(
	(--) Comment to the next)

	.(
	(--) Display next idiom up to next)

	\
	(--) Comment to the new line

// strings

 ,{name:"[" ,xt:function(){compiling=false;},immediate:true}

 ,{name:"]" ,xt:function(){compiling=true;}}

 ,{name:"find" ,xt:function(){idiom=parse(); stack.push(find(idiom));}}

 ,{name:"'" ,xt:function(){tick();}}

 ,{name:"(')" ,xt:function(){stack.push(words[w].pf[ip++]);}}

 ,{name:"[']" ,xt:function(){compilecode("(')");

 tick(); compilecode(stack.pop());},immediate:true}

 ,{name:"dolit" ,xt:function(){stack.push(words[wp].pf[ip++]);}}

 ,{name:"dostr" ,xt:function(){stack.push(words[w].pf[ip++]);}}

 ,{name:'s"' ,xt:function(){s=parse('"');

 if (compiling) {compilecode("dostr");dictcompile(s);}

 else {stack.push(s);};},immediate:true}

 ,{name:"dotstr",xt:function(){n=words[wp].pf[ip++];logtype(n);}}

 ,{name:'."' ,xt:function(){s=parse('"');

 if (compiling) {compilecode("dotstr");dictcompile(s);}

 else {logtype(s);};},immediate:true}

 ,{name:'(' ,xt:function(){s=parse(')');},immediate:true}

 ,{name:'.(' ,xt:function(){s=parse(')');logtype(s);},immediate:true}

 ,{name:'\\' ,xt:function(){s=parse('\n');},immediate:true}

Control Structures

When the outer interpreter compiles a colon word, it builds a token list. Chuck Moore invented a very simple mechanism to build control structures in a token list. He designated a set of words that are executed while compiling. These words are called immediate words. These immediate words build control structures by compiling address literals. The addresses in the address literals are resolved correctly in a single pass, using the parameter stack to hold addresses for forward and backward referencing.
Following are all the control structure used in jeforth:
	Conditional branch
	if ... then

	
	if ... else ... then

	Finite loop
	for ... next

	
	for ... aft ... then... next

	Infinite loop
	begin ... again

	Indefinite loop
	begin ... until

	
	begin ... while ... repeat

The control structure contains use three address literals: branch, 0branch, and donext. The following table shows how these immediate words are used in colon words to build control structures:

	exit
	(--) Unnest a list

	0branch
	(f --) Branch to the following address if tos is 0

	donext
	(--) Loop to the following address

	if
	(f --) Skip the next true branch if tos is 0

	else
	(--) Take the next false branch

	then
	(--) Terminate an if-else-then branch structure

	begin
	(--) Start a begin loop structure

	again
	(--) Repeat the begin loop

	until
	(f --) Repeat begin loop if tos is 0

	while
	(f --) Skip the following true branch if tos is 0

	repeat
	(--) Repeat begin loop

	for
	(n --) Repeat following loop n+1 times

	next
	(--) Decrement top of return stack. Exit loop if top of return stack is negative negative.

	aft
	(--) Skip loop once for the first time

The following table shows how these immediate words actually do at compile time. In the comments here is for an address to be compiled later into an address literal, and there is a pointer pointing to an address object that needs to be resolved.
	then
	(there --) terminates a conditional branch structure. It uses the address of next token to resolve the address literal at there left by if or else.

	for
	(-- here) starts a for-next loop structure in a colon definition. It compiles >r, that pushes a loop count on return stack. It also leaves the address of next token on data stack, so that next will compile a donext address literal with the correct branch address.

	begin
	(-- here) starts an infinite or indefinite loop structure. It does not compile anything, but leave the current token address on data stack to resolve address literals compiled later.

	next
	(here --) terminate a for-next loop structure, by compiling a donext address literal, branch back to the address here on data stack.

	until
	(here --) terminate a begin-until indefinite loop structure. It compiles a qbranch address literal using the address here on data stack.

	again
	(here --) terminate a begin-again infinite loop structure. . It compiles a branch address literal using the address here on data stack.

	if
	(-- there) starts a conditional branch structure. It compiles a qbranch address literal, with a 0 in the address field. It leaves the address of this address field on data stack. this address will later be resolved by else or then in closing the true clause in the branch structure.

	ahead
	(-- there) starts a forward branch structure. It compiles a branch address literal, with a 0 in the address field. It leaves the address of this address field on data stack. this address will later be resolved when the branch structure is closed.

	repeat
	(there here --) terminates a begin-while-repeat indefinite loop structure. It compiles a branch address literal with address there left by begin, and uses the address of next token to resolve the address literal at here a.

	aft
	(here – here there) jumps to then in a for-aft-then-next loop the first time through. It compiles a branch address literal and leaves its address field on stack. this address will be resolved by then. It also replaces address a left by for by the address of next token so that next will compile a donext address literal to jump back here at run time.

	else
	(there -- there) starts the false clause in an if-else-then structure. It compiles a branch address literal. It uses the current token address to resolve the branch address in there, and replace there with the address of its address literal.

	while
	(here – there here) compiles a qbranch address literal in a begin-while-repeat loop. the address here of this address literal is swapped with address there left by begin, so that repeat will resolve all loose ends and build the loop structure correctly.

// structures

 ,{name:"exit" ,xt:function(){exit();}}

 ,{name:"0branch",xt:function(){

 if(stack.pop()) ip++;else ip=words[wp].pf[ip];}}

 ,{name:"donext" ,xt:function(){i=rstack.pop()-1;

 if(i>=0){ip=words[wp].pf[ip];rstack.push(i);}else {ip++;};}}

 ,{name:"if" ,xt:function(){ // if (-- here)

 compilecode("0branch");

 stack.push(words[words.length-1].pf.length);dictcompile(0);},immediate:true}

 ,{name:"else",xt:function(){ // else (here -- there)

 compilecode("branch");h=words[words.length-1].pf.length;dictcompile(0);

 words[words.length-1].pf[stack.pop()]

 =words[words.length-1].pf.length;stack.push(h);},immediate:true}

 ,{name:"then",xt:function(){ // then (there --)

 words[words.length-1].pf[stack.pop()]

 =words[words.length-1].pf.length;},immediate:true}

 ,{name:"begin" ,xt:function(){ // begin (-- here)

 stack.push(words[words.length-1].pf.length);},immediate:true}

 ,{name:"again" ,xt:function(){ // again (there --)

 compilecode("branch");compilecode(stack.pop());},immediate:true}

 ,{name:"until" ,xt:function(){ // until (there --)

 compilecode("0branch");compilecode(stack.pop());},immediate:true}

 ,{name:"while" ,xt:function(){ // while (there -- there here)

 compilecode("0branch");

 stack.push(words[words.length-1].pf.length); dictcompile(0);},immediate:true}

 ,{name:"repeat" ,xt:function(){ // repeat (there1 there2 --)

 compilecode("branch");t=stack.pop();compilecode(stack.pop());

 words[words.length-1].pf[t]=words[words.length-1].pf.length;},immediate:true}

 ,{name:"for" ,xt:function(){ // for (-- here)

 compilecode(">r");stack.push(words[words.length-1].pf.length);},immediate:true}

 ,{name:"next",xt:function(){ // next (here --)

 compilecode("donext"); compilecode(stack.pop());},immediate:true}

 ,{name:"aft" ,xt:function(){ // aft (here -- here there)

 stack.pop();compilecode("branch");

 h=words[words.length-1].pf.length;dictcompile(0);

 stack.push(words[words.length-1].pf.length);stack.push(h);},immediate:true}

Defining Words

A Forth word is defined as an object in the words[] array. A word object may contain 5 fields:

· A name field, with a name string;

· A code field xt, with an executable function;

· An optional parameter field pf, with a token list required by a colon word;

· An optional data field qf, with one or several data objects; and
· An optional immediate flag field, with a true flag to signify an immediate word.
All Forth words in the boot-up dictionary are primitive words with only the name field and the code field xt. Most Forth words defined after boot-up are colon words, with a token list in its parameter field qf. Constants and variables and arrays have their data stored in the qf data field. Immediate words that compile control structures have a true flag in their immediate field.
This set of words, ‘:’, constant, variable and create, are defining words.

create does not allot space in its qf field. The command ‘,’ (comma) adds one data object to the qf field. The command allot allocates a number of data objects in the pf field, and initializes them all to a 0.

	:
	(colon) (-- ; <string>) creates a new colon word. It takes the following string in the input stream to be the name of the new word. It compiles a docol() to the xt field,and initializes the pf field to receive a new token list.

	;
	(semi-colon) (--) terminates a colon word. It compiles an exit to the end of the token list in the pf field of the newly built word object

	create
	(-- ; <string>) creates a new array without allocating memory. memory is allocated using allot.

	variable
	(-- ; <string>) creates a new variable, and initialize its qf field to 0.

	constant
	(n -- ; <string>) creates a new constant, and initialize its qf field with the value n.

	allot
	(n --) extends the pf field in the newly created word by n objects, and initialize them with the value 0.

	does
	In a create-does structure, separate the compiler started by create and starts a interpreter similar to a colon word, terminated by a ‘;’. The create part builds up data in the qf field. The does part will access data in the qf field using the q@ command. does replaces the dovar() function in the xt field of the new defining word with docol(), and copies the token list following it into the pf field in the new defining word.

	q@
	(i – n) It can only be used in the does part of a word that creates a new defining word. It uses the offset i to return the ith object in the qf field.

// defining words

 ,{name:":" ,xt:function(){newname=parse();compiling=true;

 words.push({name:newname,xt:function(){nest();},pf:[]});}}

 ,{name:";" ,xt:function(){compiling=false;compilecode("exit");},

 immediate:true}

 ,{name:"create" ,xt:function(){newname=parse();

 words.push({name:newname,xt:function(){dovar();},qf:[]});}}

 ,{name:"variable",xt:function(){newname=parse();

 words.push({name:newname,xt:function(){dovar();},qf:[0]});}}

 ,{name:"constant",xt:function(){newname=parse();

 words.push({name:newname,xt:function(){docon();},qf:[stack.pop()]});}}

 ,{name:"," ,xt:function(){dictcompile(stack.pop());}}

 ,{name:"allot" ,xt:function(){n=stack.pop();

 for(i=0;i<n;i++) words[words.length-1].qf.push(0);}}

Define a Defining Word

The concept of defining word is a very unique feature of Forth, in that it allows you to define new classes of words that can make specific use of data stored in their data fields. A new defining word is defined by a create-does structure in a colon word:

: <definingWord> create <compiler words> does <interpreter words> ;

A defining word is defined just like a regular colon word. It starts with the colon command ‘:’ with its name. Then create (or constant if you use only one data object) creates a new word. The sequences of words in <compiler words> specify how to build the data field qf in the new word. The sequences of words <interpreter words> specify how the data in qf field are to be interpreted when this new word is later executed. This defining word can be used to create a class of words that share the same interpreter encoded in <interpreter word>. You can design your own compiler and interpreter and create a new class of words that solves your problem most efficiently.

Words in the list <interpreter words> access data stored in the qf data field with the command q@. q@ expects an array of data in the qf field and uses an index on the parameter stack to read a specific object out of the data array in qf.
 ,{name:"does" ,xt:function(){words[words.length-1].xt=function(){nest();};

 words[words.length-1].pf=words[wp].pf.slice(ip);ip=-1;}}

 ,{name:"q@" ,xt:function(){ // q@ (i -- n) designed for does words

 i=stack.pop();stack.push(words[wp].qf[i]);}}
New defining words can be defined with the create-does construct. An example is ppqn in ajsBach614 music file that defines a set of words that play music chords for different lengths of time:

: ppqn constant does 0 q@ fudge @ * play ;

128 ppqn 1/1 64 ppqn 1/2 32 ppqn 1/4 16 ppqn 1/8

 8 ppqn 1/16 4 ppqn 1/32 2 ppqn 1/64 1 ppqn 1/128

The notes commands have both pf and qf fields in their objects:

{name:"1/1",xt:function(){nest();},qf:[128],pf[5,0,121,225,114,35,227,6]}

{name:"1/2",xt:function(){next();},qf:[64]},pf[5,0,121,225,114,35,227,6]}

{name:"1/4",xt:function(){nest();},qf:[32]},pf[5,0,121,225,114,35,227,6]}

The token list [5,0,121,225,114,35,227,6]is compiled from the code sequence ‘0 q@ fudge @ * play ;’ after the command does in the definition of ppqn.

Tools

All Forth words are objects containing all information needed for their execution. All colon words have their token list in their pf fields. All variables and all constants have their values in their qf fields. An array defined by create has the array values stored in its qf field. These array objects are addressed by the array token w and an offset. The Forth memory commands @ and ! can only be used to access variables. Additional commands array@ and array! are used to access arrays.

A set of tool words are defined to make it easier for you to write Forth words in jeforth and to debug them. All Forth words are now objects in JavaScript. These tool words help you to get important information about the word objects.

	boot
	Clear the dictionary and delete all words compiled after booting.

	words
	Display names of all words in the dictionary from the newest to the oldest.

	dump
	Display all words in the dictionary in a form that can be copied back to jeforth614.js file so that newly compiled words will be included on boot-up.

	here
	Display the index of the next word to be added to the dictionary.

	forget
	Search the following word in the dictionary. Delete it and all words defined after it. The system words at boot time are protected and cannot be removed.

	see
	Look up the following word in the dictionary and decompile its token list.

	date
	Display the current date and time.

	@
	(w – n) w is the token of a variable. Return the data stored in its qf field.

	!
	(n w --) Stored the data n into the qf field of a variable w.

	+!
	(n w --) Add value n to the qf field in the variable w.

	?
	(w --) Display the contents in the qf field of a variable w.

	array@
	(w i --) Return the ith object in the qf field of an array w defined by create.

	array!
	(n w i --) Store data n into the ith object in the qf field of an array w defined by create.

	to
	(n --) Change the value of the following constant to n. The constant will return n afterwards.

	is
	(w1 w2 --) Copy the token list in the pf field of w1 to the pf field of w2. Make w2 behave like w1.

	ms
	(n--) Delay n milliseconds..

dump is designed to display all the word objects in a form that you can paste them in the source code file jsforth614 and have them available on boot-up. JavaScript is very interesting in that scripts compiled at run time can be used in the source code. dump thus allows you to build a turney system for your application.
The colon word decompiler see is also interesting. As mention before, a token list in a colon word contains mostly tokens of other words, with some literals dispersed in it. There are three types of literals: a number literal having a following number object, an address literal having a following address object, and a string literal having a following string object. These objects take the space of one token. The decompiler simply looks up each token in a token list and display its name. When it encounters a literal token, it displays the contents of the following object. Very simple.

Constants are simple to use. You send its name, and it returns its value on the stack. Variables are flexible. You get its token or address, and use @ to get its current value or use ! the change its value. I would be nice if we can change the value of a constant. You can do it in jeforth. You first find the token of a constant by the tick (‘) command. With its token as an address, you can store a new value with the ! command. It works well in the interpreting mode. In the compiling mode, use to to change the value of a constant compiled immediately after to.
A colon word has a token list in its parameter field. A token list is an object in a parameter field. A token list can be easily changed to another token list in another colon word. This is generally called vectored execution in Forth parlence. The command is does exactly that. is requires two parameter on the stack: the token of a source colon word and the token of a target colon word. After is is executed, the target colon word gets the token list of the source colon word, and behave exactly like the source colon word.

// tools

 ,{name:"here",xt:function(){stack.push(words.length);}}

 ,{name:"words",xt:function(){

 for(i=words.length-1;i>=0;i--)logtype(words[i].name+" ");}}

 ,{name:"dump",xt:function(){logtype('words[
');

 for(i=0;i<words.length;i++){

 logtype('{name:"'+words[i].name+'", xt:'+words[i].xt.toString());

 if (words[i].pf)logtype(', pf:['+words[i].pf.toString()+']');

 if (words[i].qf)logtype(', qf:['+words[i].qf.toString()+']');

 if (words[i].immediate)logtype(' ,immediate:'+words[i].immediate);

 logtype('}},
');}

 logtype(']
');}}

 ,{name:"forget",xt:function(){tick();n=stack.pop();

 if (n < fence) {stack=[];throw(" "+idiom+" below fence");}

 for(i=words.length-1;i>=n;i--)words.pop();}}

 ,{name:"boot",xt:function(){

 for(i=words.length-1;i>=fence;i--)words.pop();}}

 ,{name:"see",xt:function(){tick();n=stack.pop();p=words[n].pf;s="";

 for(i=0;i<p.length;i++){

 if (s=="dolit"||s=="branch"||s=="0branch"

 ||s=="donext"||s=="dostr"||s=="dotstr")

 {s=" ";logtype(p[i].toString()+" ");}

 else {s=words[p[i]].name;logtype(s+" ");}}}}

 ,{name:"date",xt:function(){d= new Date(); logtype(d+"
");}}

 ,{name:"@" ,xt:function(){a=stack.pop();stack.push(words[a].qf[0]);}}

 ,{name:"!" ,xt:function(){a=stack.pop();words[a].qf[0]=stack.pop();}}

 ,{name:"+!" ,xt:function(){a=stack.pop();words[a].qf[0]+=stack.pop();}}

 ,{name:"?" ,xt:function(){

 logtype(words[stack.pop()].pf[0].toString(base)+" ");}}

 ,{name:"array@",xt:function(){ // array@ (w i -- n)

 i=stack.pop();a=stack.pop();stack.push(words[a].qf[i]);}}

 ,{name:"array!",xt:function(){ // array! (n w i --)

 i=stack.pop();a=stack.pop();words[a].qf[i]=stack.pop();}}

 ,{name:"is",xt:function(){ // (a --) vector a to next word

 tick();b=stack.pop();a=stack.pop();words[b].pf=words[a].pf;}}

 ,{name:"to",xt:function(){ // (a --) change value of next word

 a=words[wp].pf[ip++];words[a].qf[0]=stack.pop();}}

 ,{name:"ms" ,xt:function(){sleep(stack.pop());}}

Transcendental Functions

JavaScript has a extensive library of transcendental functions. Many of them are included in jeforth614. They are selected to be compatible with the Haikus in Brad Nelsons ForthSalon.
	pi
	(-- pi) Return PI

	random
	(-- a) Return a random number betwee 0 and 1

	int
	(a -- n) Change tos to integer

	ceil
	(a -- n) Ceiling tos to integer

	floor
	(a -- n) Floor tos to integer

	sin
	(a -- b) Reture sine of tos

	cos
	(a -- b) Reture cosine of tos

	tan
	(a -- b) Reture tangent of tos

	asin
	(a -- b) Reture arc sine of tos

	acos
	(a -- b) Reture arc cosine of tos

	exp
	(a -- b) Reture exponential of tos

	log
	(a -- b) Reture logarithmic of tos

	sqrt
	(a -- b) Reture square root of tos

	abs
	(a -- b) Reture absolute of tos

	max
	(a b -- c) Return larger of two tos items

	min
	(a b -- c) Return smaller of two tos items

	atan2
	(a b -- c) Return arc tangent of a/b

	pow
	(a b -- c) Return a to the bth power

// transcendental

 ,{name:"pi" ,xt:function(){stack.push(Math.PI);}}

 ,{name:"random",xt:function(){stack.push(Math.random());}}

 ,{name:"int" ,xt:function(){stack.push(Math.trunc(stack.pop()));}}

 ,{name:"ceil" ,xt:function(){stack.push(Math.ceil(stack.pop()));}}

 ,{name:"floor" ,xt:function(){stack.push(Math.floor(stack.pop()));}}

 ,{name:"sin" ,xt:function(){stack.push(Math.sin(stack.pop()));}}

 ,{name:"cos" ,xt:function(){stack.push(Math.cos(stack.pop()));}}

 ,{name:"tan" ,xt:function(){stack.push(Math.tan(stack.pop()));}}

 ,{name:"asin" ,xt:function(){stack.push(Math.asin(stack.pop()));}}

 ,{name:"acos" ,xt:function(){stack.push(Math.acos(stack.pop()));}}

 ,{name:"exp" ,xt:function(){stack.push(Math.exp(stack.pop()));}}

 ,{name:"log" ,xt:function(){stack.push(Math.log(stack.pop()));}}

 ,{name:"sqrt" ,xt:function(){stack.push(Math.sqrt(stack.pop()));}}

 ,{name:"abs" ,xt:function(){stack.push(Math.abs(stack.pop()));}}

 ,{name:"max" ,xt:function(){

 b=stack.pop();stack.push(Math.max(stack.pop(),b));}}

 ,{name:"min" ,xt:function(){

 b=stack.pop();stack.push(Math.min(stack.pop(),b));}}

 ,{name:"atan2" ,xt:function(){

 b=stack.pop();stack.push(Math.atan2(stack.pop(),b));}}

 ,{name:"pow" ,xt:function(){

 b=stack.pop();stack.push(Math.pow(stack.pop(),b));}}

Canvas Context
In jeforth614.html, a small canvas with 100x100 pixels is set up. A new canvas context is initialized whenever jeforth614 is called to process the text entered in the input buffer:

<canvas id="cv" width=100 height=100></canvas>

var canvas = document.getElementById("cv");

var context = canvas.getContext("2d");

var imagedata = context.createImageData(width, height);
A few primitive commands are defined in jeforth614.js to work on the canvas pixels. The image on the canvas can be accessed as an array of 10,000 pixels in 40,000 bytes. image@ reads three consecutive bytes from this array as (r,g,b) values. image! Writes an (r,g,b) pixel in three consecutive bytes to this image array. The command show reveals the stored image array on the canvas.

	image@
	(a -- r g b) "Return the (r,g,b) colors of the image pixel at address a"

	image!
	(r g b a --) "Store the (r,g,b) colors in the image pixel at address a"

	show
	(--) Reveal the image on the canvas

// canvas

 ,{name:"image@",xt: function() { // (a -- r g b)

 a=stack.pop();

 stack.push(imagedata.data[a]); // Red

 stack.push(imagedata.data[a+1]); // Green

 stack.push(imagedata.data[a+2]);}} // Blue

 ,{name:"image!",xt: function() { // (r g b a --)

 a=stack.pop();b=stack.pop();g=stack.pop();r=stack.pop();

 imagedata.data[a] = r; // Red

 imagedata.data[a+1] = g; // Green

 imagedata.data[a+2] = b; // Blue

 imagedata.data[a+3] = 255;}} // Alpha

 ,{name:"show" ,xt:function(){context.putImageData(imagedata, 0, 0);}}

Haikus

Lesson 20 gives a few examples to paint simple national flags emulating the Haikus on Brad Nelson’s ForthSalon. To draw Haiku pictures, we need the coordinates x and y defined as constants while changing their values as necessary. The command to is designed to change the value of a constant in a colon command.

(constants. compile only)

0 constant x

0 constant y

: xytest 12 to x 34 to y ;

to must be used in a colon word to change the value of a constant. Do not use it for any other purposes. It takes advantage of a constant object in that the constant value stored in its qf field can be changed. This example draws a plain green flag on the canvas. It was Libya’s national flag during Gaddafi’s days, the prettiest flag, in my humble opinion.

(libya is a prototype for drawing)

: proto 0 255 0 ;

: haiku 39996 99 for r@ to x 99 for r@ to y

 >r proto r@ image! r> 4 -

 next next drop show ;

haiku
Another interesting feature in jeforth is that the token list in the parameter field of a colon word can be replaced by the token list in another colon word by the command vector. Here haiku is defined to execute a function proto that returns an (r,g,b) set of color values depending on the current values of x and y. Using proto, haiku draws a green flag. When proto is vectored to another painting command, haiku produces another flag.

(other drawing words are vectored to proto)

: france

 x 33 > 255 *

 x 33 > x 66 < and 255 *

 x 66 < 255 *

 ;

' france is proto haiku

: germany

 y 33 > 255 *

 y 66 > 255 *

 0 ;

' germany is proto haiku

(sin is fun)

: switzerland

 255

 x 32 / sin 0.95 > y 32 / sin 0.95 > or

 x 32 / sin 0.5 > and y 32 / sin 0.5 > and

 255 *

 dup ;

' switzerland is proto haiku

: 4spire x 100 / 23 * sin y 100 / 1 swap - max x 100 /

 over / sin y 100 / 1 swap -

 rot / sin 2dup / sin 255 * rot 255 * rot 255 * rot ;

' 4spire is proto haiku
Audio Context

jeforth614.html sets up an audio context to make noises.

 var AudioContext = window.AudioContext || window.webkitAudioContext;

When jeforth614 sends some text to jeforth for execution, a new audio context is created and is ready to generate up to 6 channels of square waves:

 audio=new AudioContext();

 amp=audio.createGain();

 amp.connect(audio.destination);amp.gain.value=0.1;

 osc1=audio.createOscillator();

 osc2=audio.createOscillator();

 osc3=audio.createOscillator();

 osc4=audio.createOscillator();

 osc5=audio.createOscillator();

 osc6=audio.createOscillator();

 osc1.connect(amp);osc1.type="square";osc1.frequency.value=0;osc1.start();

 osc2.connect(amp);osc2.type="square";osc2.frequency.value=0;osc2.start();

 osc3.connect(amp);osc3.type="square";osc3.frequency.value=0;osc3.start();

 osc4.connect(amp);osc4.type="square";osc4.frequency.value=0;osc4.start();

 osc5.connect(amp);osc5.type="square";osc5.frequency.value=0;osc5.start();

 osc6.connect(amp);osc6.type="square";osc6.frequency.value=0;osc6.start();
When jeforth finishes processing the text, it turns off all 6 channels of square waves.

 osc1.stop();osc2.stop();osc3.stop();

 osc4.stop();osc5.stop();osc6.stop();
Inside jeforth the function poly() orders the 6 oscillators to produce up to 6 square waves for a number of milliseconds specified by ms.

// audio

 function sleep(ms){var d=Date.now();var n=0;

 do {n=Date.now();} while (n-d < ms);}

 function poly(vol,bass,tenor,alto,soprano,pedal,flute,ms){

 amp.gain.value=vol;

 osc1.frequency.value=bass;

 osc2.frequency.value=tenor;

 osc3.frequency.value=alto;

 osc4.frequency.value=soprano;

 osc5.frequency.value=pedal;

 osc6.frequency.value=flute;

sleep(ms);}
poly() is used to build a primitive Forth word poly to be used in Forth programs to execute poly(). I put in a delay loop sleep(ms) to give a 6 voice chord enough time to finish. In lesson 19, this set of Forth words allows you to play some songs:

	poly
	(v a b c d e f ms --) Play a 6 voice chord with volume of v for ms milliseconds

// tone

 ,{name:"poly",xt:function(){ // vol bass tenor alto soprano pedal flute ms

 a=stack.pop();b=stack.pop();c=stack.pop();

 d=stack.pop();e=stack.pop();f=stack.pop();g=stack.pop();

 h=stack.pop();poly(h,g,f,e,d,c,b,a);}}
Chapter 4. Lessons614.txt

Lessons614.txt file contains 20 tutorials I distributed with earlier eForth systems. They are also my sanity checks. Most of my problems in implementing a new eForth system surfaced when I ran these lessons on my new target machines. The tib input box in the jeforth614.html web page appears to be small and unimpressive. Nevertheless, it can accept a very large amount of text. Instead of typing each lesion by hand, you can copy a lesson and paste it into the input box, and hit the return key to execute/compile it. When the whole system is debugged, I simply copy the entire file into the input box and hit the return key. Usually, everything will be compiled correctly. If you scroll the log box back, you will see the results from many lessons. When you read a lesson, you can just type in the final word in that lesson and verify the results.

In the beginning of Lesson614.txt, there are a number of small test routines. I always used these test routines to verify a new eForth system I built. If these tests passed, the Forth interpreter and compiler were working. Subsequent problems were all minor, and could be dealt with on a word by word bases.

	Tests
	A few test to verify eForth system

	Lesson 1
	Universal 'Hello World' greeting

	Lesson 2
	Use character '*' to build a big F

	Lesson 3
	Build more big letters FIG

	Lesson 4
	Build parallegrams and other patterns

	Lesson 5
	The theory that jack built, a multi-stanza poem

	Lesson 6
	Help, use Forth interpreter to carry on dialog

	Lesson 7
	Money exchange for different currencies

	Lesson 8
	Temperature conversion

	Lesson 9
	Weather reporting

	Lesson 10
	Print a multiplication table

	Lesson 11
	Print monthly calendars, bases on one year=365.256363 days

	Lesson 12
	Sines and cosines are JavaScript transcendental functions

	Lesson 13
	Square root is a JavaScript functions

	Lesson 14
	Radix for number conversions

	Lesson 15
	Print an ascii character table

	Lesson 16
	Random numberis a JavaScript functions

	Lesson 17
	Guess a number game

	Lesson 18
	This is a chinese word game

	Lesson 19
	Play a few music tunes

	Lesson 20
	Draw Haiku pictures on a small canvas

Lesson 5 builds a poem progressively more complex, and carries ot to a suprising conclusion.

Lesson 6 plays a pyciatrist trying to help you dealing with problems in your life.

Lesson 11 prints monthly calendars for any month in any year after 1950, based on the simple fact that each year has 365.256363 days.

Lesson 18 is a Chinese word game for my Chinese friends. Chinese characters line up beautifully to form a poem with 6 characters in a line.

Lesson 19 shows you how to play some simple tunes. It pales when compared to what jsBach does. It just shows you how to generate some noises for fun.

Lesson 20 shows you how to paint some pictures in a 100x100 pixel canvas at the top left corner of the web page. The pictures are called Haikus by Brad Nelson, who runs a website ForthSalon showing all kinds of interesting Haikus. You can contribute your own Haikus on his website.

A Japanese Haiku is a short, three-line poem, each line having 5,7 and 5 characters. Our graphic Haiku is based on a Forth word that produces three values on the stack, painting the (r,g,b) color of a point (x,y) on the canvas. Read the examples in Lesson 20 and try to draw some Haikus yourself. This lesson shows you how to access the graphic capabilities in JavaScript.

(There are 20 lessons to learn using this Forth system)

(Try typing these lessons into the input box and run them.)

(You can copy a lesson and paste it into the input box.)

(You can copy the entire file and run all lessons.)

(Try these commands:)

(words show all commands in the dictionary)

(date show current date and time)

(see <name> disassemble a command)

(reboot remove all added commands)

(forget <name> remove all commans after <name>)

(eforth system tests)

: test1 1 2 3 4 5 ;

: test2 if 1 else 2 then . ;

: test3 10 for r@ . next ;

: test4 10 for aft r@ . then next ;

: test5 10 begin dup . dup while 1 - repeat drop ;

: test6 1000000 for next ; (80 ms)

: test7 100 for test6 next ;

(date test7 date)

(lesson 1. the universal greeting)

: hello cr ." hello, world!" ;

hello

(lesson 2. the big f)

: bar cr ." *****" ;

: post cr ." *____" ;

: f bar post bar post post post ;

f

(lesson 3. fig, forth interest group)

(HTML hates spaces. I have to use underscores in their places.)

(pretend you do not see the underscores.)

: center cr ." __*__" ;

: sides cr ." *___*" ;

: triad1 cr ." *_*_*" ;

: triad2 cr ." **__*" ;

: triad3 cr ." *__**" ;

: triad4 cr ." _***_" ;

: quart cr ." **_**" ;

: right cr ." *_***" ;

: bigt bar center center center center center center ;

: bigi center center center center center center center ;

: bign sides triad2 triad2 triad1 triad3 triad2 sides ;

: bigg triad4 sides post right triad1 sides triad4 ;

: fig f bigi bigg ;

(fig)

(lesson 4. repeated patterns)

variable width (number of asterisks to print)

: spaces for space next ;

: asterisks (-- , print n asterisks on the screen, n=width)

 width @ (limit=width, initial index=0)

 for ." *" (print one asterisk at a time)

 next (repeat n times)

 ;

: rectangle (height width -- , print a rectangle of asterisks)

 width ! (initialize width to be printed)

 for cr

 asterisks (print a line of asterisks)

 next

 ;

: parallelogram (height width --)

 width !

 for cr r@ spaces (shift the lines to the right)

 asterisks (print one line)

 next

 ;

: triangle (width -- , print a triangle area with asterisks)

 for cr

 r@ width ! (increase width every line)

 asterisks (print one line)

 next

 ;

(try the following instructions:)

 3 10 rectangle

 5 18 parallelogram

 12 triangle

(lesson 5. the theory that jack built)

(this example shows you how to build a hiararchical structure in forth)

: the ." the " ;

: that cr ." that " ;

: this cr ." this is " the ;

: jack ." jack builds" ;

: summary ." summary" ;

: flaw ." flaw" ;

: mummery ." mummery" ;

: k ." constant k" ;

: haze ." krudite verbal haze" ;

: phrase ." turn of a plausible phrase" ;

: bluff ." chaotic confusion and bluff" ;

: stuff ." cybernatics and stuff" ;

: theory ." theory " jack ;

: button ." button to start the machine" ;

: child ." space child with brow serene" ;

: cybernatics ." cybernatics and stuff" ;

: hiding cr ." hiding " the flaw ;

: lay that ." lay in " the theory ;

: based cr ." based on " the mummery ;

: saved that ." saved " the summary ;

: cloak cr ." cloaking " k ;

: thick if that else cr ." and " then

 ." thickened " the haze ;

: hung that ." hung on " the phrase ;

: cover if that ." covered "

 else cr ." to cover "

 then bluff ;

: make cr ." to make with " the cybernatics ;

: pushed cr ." who pushed " button ;

: without cr ." without confusion, exposing the bluff" ;

: rest (pause for user interaction)

 ." . " (print a period)

 10 spaces (followed by 10 spaces)

 (key (wait the user to press a key)

 drop cr cr ;

: cloaked cloak saved based hiding lay rest ;

: THEORY

 cr this theory rest

 this flaw lay rest

 this mummery hiding lay rest

 this summary based hiding lay rest

 this k saved based hiding lay rest

 this haze cloaked

 this bluff hung 1 thick cloaked

 this stuff 1 cover hung 0 thick cloaked

 this button make 0 cover hung 0 thick cloaked

 this child pushed

 cr ." that made with " cybernatics without hung

 cr ." and, shredding " the haze cloak

 cr ." wrecked " the summary based hiding

 cr ." and demolished " the theory rest

 ;

THEORY

(lesson 6. help)

(use forth interpreter to carry on a dialog)

: question

 cr cr ." any more problems you want to solve?"

 cr ." what kind (sex, job, money, health) ?"

 cr

 ;

: help cr

 cr ." hello! my name is creating computer."

 cr ." hi there!"

 cr ." are you enjoying yourself here?"

 cr ." say!"

 cr ." i can solved all kinds of problems except those dealing"

 cr ." with greece. "

 question

 ;

: sex cr cr ." is your problem too much or too little?"

 cr

 ;

: too ; (noop for syntax smoothness)

: much cr cr ." you call that a problem?!! i should have that problem."

 cr ." if it really bothers you, take a cold shower."

 question

 ;

: little

 cr cr ." why are you here!"

 cr ." you should be in tokyo or new york of amsterdam or"

 cr ." some place with some action."

 question

 ;

: health

 cr cr ." my advise to you is:"

 cr ." 1. take two tablets of aspirin."

 cr ." 2. drink plenty of fluids."

 cr ." 3. go to bed (along) ."

 question

 ;

: job cr cr ." i can sympathize with you."

 cr ." i have to work very long every day with no pay."

 cr ." my advise to you, is to open a rental computer store."

 question

 ;

: money

 cr cr ." sorry! i am broke too."

 cr ." why don't you sell encyclopedias of marry"

 cr ." someone rich or stop eating, so you won't "

 cr ." need so much money?"

 question

 ;

: h help ;

help

(lesson 7. money exchange)

decimal

: euro (nnt -- $) 0.815 * ;

: $euro (nnt -- $) 0.815 / ;

: nt (nnt -- $) 28.07 * ;

: $nt ($ -- nnt) 28.07 / ;

: rmb (nrmb -- $) 6.50 * ;

: $rmb ($ -- njmp) 6.50 / ;

: hk (nhk -- $) 7.75 * ;

: $hk ($ -- $) 7.75 / ;

: gold (nounce -- $) 1900.6 * ;

: $gold ($ -- nounce) 1900.6 / ;

: silver (nounce -- $) 26.42 * ;

: $silver ($ -- nounce) 26.42 / ;

: ounce (n -- n, a word to improve syntax) ;

: dollars (n --) . ;

(with this set of money exchange words, you can do some tests:)

 5 ounce gold .

 10 ounce silver .

 100 $nt .

 20 $rmb .

(you have many different currency bills in your wallet, you)

(can add then all up in dollars:)

 1000 nt 500 hk +

 320 rmb +

 dollars (print out total worth in dollars)

(lesson 8. temperature conversion

: f>c (nfarenheit -- ncelcius)

 32 - 1.8 / ;

: c>f (ncelcius -- nfarenheit)

 1.8 * 32 + ;

(try these commands)

90 f>c . (celcius in a hot summer day)

0 c>f . (farenheit in a cold winter night)

(lesson 9. weather reporting.)

: weather (nfarenheit --)

 dup 55 <

 if ." too cold!" drop

 else 85 <

 if ." about right."

 else ." too hot!"

 then

 then

 ;

(you can type the following instructions to your computer:)

 90 weather (too hot!)

 70 weather (about right.)

 32 weather (too cold.)

(lesson 10. print the multiplication table)

: onerow (nrow --)

 cr

 dup 3 .r 3 spaces

 1 11

 for 2dup *

 4 .r

 1 +

 next

 2drop ;

: multiply (--)

 cr cr 6 spaces

 1 11

 for dup 4 .r 1 +

 next drop

 1 11

 for dup onerow 1 +

 next drop

 ;

multiply

(lesson 11. calendars)

(print weekly calendars for any month in any year.)

decimal

variable julian (0 is 1/1/1950)

variable leap (1 for a leap year, 0 otherwise.)

365.256363 constant daysYear (days in a year)

: year (year --, compute julian date and leap year)

 dup

 1949 - daysYear * int >r

 1950 - daysYear * dup julian ! (0 for 1/1/1950)

 int r> swap - (leap year)

 365 - leap !

 ;

: first (month -- 1st, 1st of a month from jan. 1)

 dup 1 =

 if drop 0 exit then (0 for jan. 1)

 dup 2 =

 if drop 31 exit then (31 for feb. 1)

 dup 3 =

 if drop 59 leap @ + exit then (59/60 for mar. 1)

 4 - 30.624 *

 90 + leap @ + ; (apr. 1 to dec. 1)

: stars cr 60 for ." *" next cr ; (form the boarder)

: header (--) (print title bar)

 stars 5 spaces

 ." sun" 5 spaces ." mon" 5 spaces

 ." tue" 5 spaces ." wed" 5 spaces

 ." thu" 5 spaces ." fri" 5 spaces

 ." sat" stars ; (print weekdays)

: blanks (month --) (skip days not in this month)

 first int julian @ int + (julian date of 1st of month)

 7 mod 8 * spaces ; (skip colums if not sunday)

: days (month --) (print days in a month)

 dup first (days of 1st this month)

 swap 1 + first (days of 1st next month)

 over - 1 - (loop to print the days)

 1 swap (first day count --)

 for 2dup + 1 -

 julian @ + 7 mod (which day in the week?)

 1 < if cr then (start a new line if sunday)

 dup 8 .r (print day in 8 column field)

 1 +

 next

 2drop ; (discard 1st day in this month)

: month (n --) (print a month calendar)

 header dup blanks (print header)

 days stars ; (print days)

: january year 1 month ;

: february year 2 month ;

: march year 3 month ;

: april year 4 month ;

: may year 5 month ;

: june year 6 month ;

: july year 7 month ;

: august year 8 month ;

: september year 9 month ;

: october year 10 month ;

: november year 11 month ;

: december year 12 month ;

2021 january

(lesson 12. sines and cosines)

(javascript has a extensive library of transcendental functions)

(they are compiled into jeforth 4.02:)

(pi random sin cos tan asin acos atan2 exp log sqrt pow)

(lesson 13. square root)

(sqrt is a native Math function in javascript)

(lesson 14. radix for number conversions)

decimal

(: decimal 10 base! ;)

(: hex 16 base! ;)

: octal 8 base! ;

: binary 2 base! ;

(try converting numbers among different radices:)

 decimal 12345 hex .

 hex abcd decimal .

 decimal 100 binary .

 binary 101010101010 decimal .

(lesson 15. ascii character table)

: character (n --)

 dup emit hex dup 4 .r

 octal dup 4 .r

 decimal 4 .r

 2 spaces

 ;

: line (n --)

 cr

 5 for dup character

 16 +

 next

 drop ;

: table (--)

 32

 15 for dup line

 1 +

 next

 drop ;

table

(lesson 16. random numbers

('random' calls a native javascript Math.random function)

(it returns a random floating point number between 0 and 1)

(lesson 17. guess a number)

(an interactive game is better programmed in javascript with an input button)

(with jeforth interpreter, the player must actively run the game)

variable num

variable limit

: help cr ." the commands to run this game are: "

 cr ." nnn setLimit --- set up the limit of number range "

 cr ." nnn guess --- make a gues"

 ;

: setLimit (n --)

 int dup limit !

 random * int num !

 ;

: guess (n --)

 int dup num @ <

 if cr ." too small " drop

 else num @ >

 if cr ." too big "

 else cr ." got it!"

 then

 then

 ;

100 setLimit

50 guess

(練習18
文字遊戲, a chinese word game)

(這是一個用骰子玩的文字遊戲。用三顆骰子，每顆有六面各別寫上兩個字。)

(一顆寫的是人物名稱，一顆寫的是地點，一顆寫的是動作。正常的六句詩是:)

(公子章台走馬
少婦閨閣刺秀 寒士茅舍讀書)

(屠夫市井揮刀 妓女花街賣俏 乞丐墳墓睡覺)

(隨便擲這三顆骰子可以有216種不同的組合，有許多組合是蠻有趣的。)

(this is a chinese word game)

(you use 3 dices: one has 6 person, one has 6 places, and one has 6 actions)

(roll the dices and you get a line. many of them are funny)

(this shows that jeforth is a chinese programming language)

: 人物 (n -- , 選一個人 select a person)

dup 1 = if ." 公子"

else dup 2 = if ." 少婦"

else dup 3 = if ." 寒士"

else dup 4 = if ." 屠夫"

else dup 5 = if ." 妓女"

else ." 乞丐"

then then then then then

drop

;

: 地點 (n -- , 選一個地點 select a place)

dup 1 = if ." 章台" drop exit then

dup 2 = if ." 閨閣" drop exit then

dup 3 = if ." 茅舍" drop exit then

dup 4 = if ." 市井" drop exit then

dup 5 = if ." 花街" drop exit then

." 墳墓"

;

: 動作 (n -- , 選一個動作 select an action)

dup 1 = if ." 走馬" drop exit then

dup 2 = if ." 刺秀" drop exit then

dup 3 = if ." 讀書" drop exit then

dup 4 = if ." 揮刀" drop exit then

5 = if ." 賣俏" else ." 睡覺" then

;

: 骰子 (-- , 印一句詩 print a line of poem)

 cr

random 6 * int 人物

random 6 * int 地點

random 6 * int 動作

;

: dice 骰子 ;

dice dice dice dice

(lesson 19. music)

decimal

variable ppqn 250 ppqn ! (250 ms)

: note (freq delay --)

 >r >r 0.1 0 0 0 0 0 r> r> poly ;

: ppqn@ ppqn @ ;

: 1/4 ppqn@ note ;

: 1/2 ppqn@ 2 * note ;

: 1/8 ppqn@ 2 / note ;

: 3/4 ppqn@ 3 * note ;

: 3/8 ppqn@ 1.5 * note ;

: blow

g2 1/4 g2 1/4 a2 1/8 g2 3/8

e2 1/4 c2 1/4 e2 1/4 g2 3/8

a2 1/8 g2 1/4 e2 1/2

c2 1/8 e2 1/8 g2 3/4 a2 3/4

f2 3/8 e2 1/8 f2 1/4 d2 1/2 d2 1/2

d2 1/4 d2 1/4 d2 1/4 f2 1/4

e2 1/4 d2 1/4 f2 1/4 e2 1/4

d2 1/4 a2 3/4 g2 1/4 g2 1/4

g2 1/4 g2 1/2 f2 1/4 e2 3/8

d2 1/8 e2 1/4 c2 3/4 ;

(notes)

1047 constant c6

987.8 constant b5

932.3 constant a5#

932.3 constant b5b

880 constant a5

830.6 constant g5#

830.6 constant a5b

784 constant g5

740 constant f5#

740 constant g5b

698.5 constant f5

659.3 constant e5

622.3 constant d5#

622.3 constant e5b

587.3 constant d5

554.4 constant c5#

554.4 constant d5b

523.3 constant c5

493.9 constant b4

466.2 constant b4b

466.2 constant a4#

440 constant a4

415.3 constant g4#

415.3 constant a4b

392 constant g4

370 constant f4#

370 constant g4b

349.2 constant f4

329.6 constant e4

311.1 constant d4#

311.1 constant e4b

293.7 constant d4

277.2 constant c4#

277.2 constant d4b

261.6 constant c4

246.9 constant b3

233.1 constant a3#

233.1 constant b3b

220 constant a3

207.7 constant g3#

207.7 constant a3b

196 constant g3

185 constant f3#

185 constant g3b

174.6 constant f3

164.8 constant e3

155.6 constant d3#

155.6 constant e3b

146.8 constant d3

138.6 constant c3#

138.6 constant d3b

130.8 constant c3

123.5 constant b2

116.5 constant a2#

116.5 constant b2b

110 constant a2

103.8 constant g2#

103.8 constant a2b

98 constant g2

92.50 constant f2#

92.50 constant g2b

87.31 constant f2

82.41 constant e2

77.78 constant d2#

77.78 constant e2b

73.42 constant d2

69.30 constant c2#

69.30 constant d2b

65.41 constant c2
: ride

 c2 1/4 c2 1/8 d2# 3/8 c2 3/8

 d2# 1/4 d2# 1/8 g2 3/8 d2# 3/8

 g2 1/4 g2 1/8 a2# 3/8 a2# 3/8

 d2# 1/4 d2# 1/8 g2 3/4 ;

: laser (limit repeats --)

 for dup 120 - 20 / 120 swap

 for dup ppqn @ note 20 +

 next drop

 next drop ;

(400 2 laser)

: warble (limit repeats --)

 for dup 120 - 20 / over swap

 for dup ppqn @ note 20 -

 next drop

 next drop ;

(800 2 warble)

decimal variable vwail 160 vwail !

: wail (div repeats --)

 for vwail @ dup (div wail wail --)

 for over note

 2dup swap / 100000 / note

 1 + next drop

 next drop ;

(10 2 wail)

: bird

 for 100 over 10 /

 for 2dup - 1 max 10000 /

 over swap note

 10 + next drop

 next drop ;

(600 2 bird)

: updown

 0 over 10 /

 for dup 0.1 note

 10 + next drop

 dup 10 /

 for aft dup 0.01 note

 10 - then next drop ;

(500 updown)

: tones

 for 100 over

 for dup 0.001 note

 1 + next drop

 next drop ;

(1000 2 tones)

(lesson 20. haiku eforth)

(see real haikus on https://forthsalon.appspot.com/)

('to' changes values of constants. compile only)

0 constant x

0 constant y

: xytest 12 to x 34 to y ;

(libya is a prototype for drawing)

: proto 0 255 0 ;

: haiku 39996 99 for r@ to y 99 for r@ to x

 >r proto r@ image! r> 4 -

 next next drop show ;

haiku

(other drawing words are vectored by 'is' command to 'proto')

: france

 x 33 > 255 *

 x 33 > x 66 < and 255 *

 x 66 < 255 *

 ;

' france ' proto is haiku

: germany

 y 33 > 255 *

 y 66 > 255 *

 0 ;

' germany ' proto is haiku

(sin is fun)

: switzerland

 255

 x 32 / sin 0.95 > y 32 / sin 0.95 > or

 x 32 / sin 0.5 > and y 32 / sin 0.5 > and

 255 *

 dup ;

' switzerland ' proto is haiku

: 4spire x 100 / 23 * sin y 100 / 1 swap - max x 100 /

 over / sin y 100 / 1 swap -

 rot / sin 2dup / sin 255 * rot 255 * rot 255 * rot ;

' 4spire ' proto is haiku

Haikus in jeforth

In jeforth614.html, a small canvas with 100x100 pixels is set up:

<canvas id="cv" width=100 height=100></canvas>

A new canvas context is initialized whenever jeforth614 is called to process the text entered in the tib input buffer:

var canvas = document.getElementById("cv");

var context = canvas.getContext("2d");

var imagedata = context.createImageData(100,100);

A few primitive commands are defined in jeforth614.js to work on the canvas pixels. The image on the canvas can be accessed as an array of 10,000 pixels in 40,000 bytes. image@ reads three consecutive bytes from this array as (r,g,b) values. image! Writes an (r,g,b) pixel in three consecutive bytes of this image array. The command show reveals the stored image array on the canvas.

// canvas

{name:"image@",xt: function() { // (a -- r g b)

 var a=stack.pop();

 stack.push(imagedata.data[a]); // Red

 stack.push(imagedata.data[a+1]); // Green

 stack.push(imagedata.data[a+2]); // Blue

 }}

{name:"image!" , xt: function() { // (r g b a --)

 var a=stack.pop(); var b=stack.pop(); var g=stack.pop(); var r=stack.pop();

 imagedata.data[a] = r; // Red

 imagedata.data[a+1] = g; // Green

 imagedata.data[a+2] = b; // Blue

 imagedata.data[a+3] = 255; // Alpha

 }}

{name:"show" , xt: function() { // (--)

 context.putImageData(imagedata, 0, 0);

 }}

 Lesson 20 in lesson614.txt file gives a few examples to paint simple national flags emulating the Haikus on Brad Nelson’s ForthSalon. To draw Haiku pictures, we need the coordinates x and y defined as constants while changing their values as necessary. The command to is designed to change the value of a constant in a colon command.

(constants. compile only)

0 constant x

0 constant y

: xytest 12 to x 34 to y ;

to must be used in a colon word to change the value of a constant. Do not use it for any other purposes. It takes advantage of a constant object in that the constant value stored in its qf field can be changed. This example draws a plain green flag on the canvas. It was Libya’s national flag during Gaddafi’s days, the prettiest flag, in my humble opinion.

(libya is a prototype for drawing)

: proto 0 255 0 ;

: haiku 39996 99 for r@ to x 99 for r@ to y

 >r proto r@ image! r> 4 -

 next next drop show ;

haiku

Another interesting feature in jeforth is that the token list in the parameter field of a colon word can be replaced by the token list in another colon word by the command vector. Here haiku is defined to execute a function proto that returns an (r,g,b) set of color values depending on the current values of x and y. Using proto, haiku draws a green flag. When proto is vectored to another painting command, haiku produces another flag.

(other drawing words are vectored to proto)

: france

 x 33 > 255 *

 x 33 > x 66 < and 255 *

 x 66 < 255 *

 ;

' france ' proto vector haiku

: germany

 y 33 > 255 *

 y 66 > 255 *

 0 ;

' germany ' proto vector haiku

(sin is fun)

: switzerland

 255

 x 32 / sin 0.95 > y 32 / sin 0.95 > or

 x 32 / sin 0.5 > and y 32 / sin 0.5 > and

 255 *

 dup ;

' switzerland ' proto vector haiku

: 4spire x 100 / 23 * sin y 100 / 1 swap - max x 100 /

 over / sin y 100 / 1 swap -

 rot / sin 2dup / sin 255 * rot 255 * rot 255 * rot ;

' 4spire ' proto vector haiku

I hope this mechanism will entice you to learn more about Forth and enjoy jeforth more.

Conclusions
Here we are, I have a Forth Virtual Machine written in JavaScript and well adapted to the Web. It used floating-point numbers and has all the transcendental functions at your fingertip. It also has the capabilities to generate polyphonic music and to draw color pictures on the web page. It also accepts large text files to program it in Forth. It is a very convenient system for you to write substantial applications in Forth on a PC without any additional hardware or software.

In the early days of the Forth Interest Group, figForth was developed to shed the straightjacket of blocks imposed on us by Chuck Moore. figForth thus found many homes in the then evolving microcomputers. eForth continued the figForth tradition while more easily adapted to the new microcontroller world. Forth survived the on-slaughter of C/C++/C# because the microcontrollers are always limited in their resources that prevent the invasion of mega operating systems. Forth survived on small microcontrollers external to the ubiquitous PC. On PC, gForth and win32forth have a very hard time competing against better designed and big company supported systems like Python and JavaScript. By leveraging built-in functions in JavaScript, perhaps jeforth can find its place on web-enabled desktop computers.

I always took pride in that eForth was the smallest and simplest Forth system around. The source code of the original 8086eforth was about 47K, with 2094 lines of code. jeforth614.js has 306 lines and 15,350 bytes! Admittedly, I intentionally packed the source code in jsforth614.js to make the line number low. jeforth614 is by far the smallest, the simplest, and the prettiest Forth system I have ever implemented. The reason is that JavaScript provided most of the functions I needed in eForth. The fact that Sam Chen coded all eForth words as primitive words in JavaScript testified how good a platform JavaScript is to support an interactive Forth Virtual Machine.

Einstein maintained that: ‘Things should be as simple as possible, but not simpler.’ I think jeforth614 is at this ‘not simpler’ state, as I called it, ‘The Irreducible Complexity.’

I am sure that jeforth614.html can be improved to present Forth more attractively to the netizens of our day. The same is also true for jeforth614.js. I hope more of us will work together to polish it to perfection so that people will use it to do useful work.

I often graded my Forth students using a karate-style belt system:
	White Belt
	Write colon words with all the control structures.

	Yellow Belt
	Write primitive assembly words and handle interrupts.

	Brown Belt
	Define new defining words with custom compilers and interpreters.

	Black Belt
	Create a new Forth Virtual Machine or design a Forth chip in FPGA.

This jeforth614 system is very small and very simple. To get most other Forth to run on a PC, you have to download a big package and install it on your PC. You have to worry about its system dependencies and compatibility with the underlying operating system. Here you only need two files, jeforth614.html and jeforth614.js. Double click jeforth614.html and you are up and running.
When you finish all 20 lessons in the lessons614.txt file, you will get your White Belt. You can define lots of colon words to do fairly complicated applications.
Dig into jeforth614.js and look at all the primitive words defined in it. Pick a few critical routines in your application, and try to re-code them in JavaScript. When you are comfortable writing your own primitive words, you will gain your Yellow Belt.

As in any substantial applications, there will be lots of words doing the same thing with different data. These data may be supplied at the run time from the parameter stack. However, if these data were known at the compile time, it would be more convenient to supply them in defining words. Once you can use the create-does construct to define new defining words, you will get your Brown Belt.
The last challenge will be to build your own Forth Virtual Machine. As you can see in jeforth614.js, a Forth Virtual Machineis not that complicated beyond your reach. The internal structure of a Forth Virtual Machine is clearly laid out in front of you. There is no reason why you cannot build it on any other operating system or computer. The FPGA kits are very cheap now. They are waiting for your exploration. If you can build a new Forth Virtual Machine, either in software or on hardware, you will become a full-fledged Black Belt Forth programmer.

Happy journey! Bon voyage! Glückliche Reise! Feliz viaje! 一路順風!

Lastly, I would like to point out the mesomeric effects of the OK prompt to us Forth programmers. I think this is one of the very important gift Chuck Moore gave us in the Forth language. No other programming languages or operating systems give their users such a comforting and positively uplifting encouragement. We habitually hit the return key just to see the OK message to reassure us of our sanity and our humanity. When I tried to implement a new Forth Virtual Machine, seeing the OK prompt assured me that all subsequent problems would be minor, and success was only a matter of time.
Appendix: List of jeforth Words
	quit
	(--) Outer interpreter

	parse
	(--) Prase out next token in input buffer

	execute
	(--) Process parsed token

	branch
	(--) Branch to following address

	dup
	(a -- a a) Duplicate tos

	over
	(a b -- a b a) Duplicate 2nd tos item

	2dup
	(a b -- a b a b) Duplicate top 2 items of tos

	4dup
	(a b c d -- a b c d a b c d) Duplicate top quad tos items

	swap
	(a b -- b a) Swap two tos items

	rot
	(a b c -- b c a) Rotata 3rd tos item to top

	-rot'
	(a b c -- c a b) Rotate tos to 3rd position

	2swap
	(a b c d -- c d a b) Swap two pairs of tos items

	2over
	(a b c d -- a b c d a b) Duplicate second pair tos items

	pick
	(i -- a) Copy ith tos item to top

	roll
	(i -- a) Roll ith tos item to top

	drop
	(a --) Discard tos

	nip
	(a b -- a) Discard 2nd tos item

	2drop
	(a b --) Discard two tos items

	>r
	(a --) Push tos to return stack

	r>
	(-- a) Pop return stack to tos

	r@
	(-- a) Duplicate top of return stack to tos

	push
	(a --) Push tos to return stack. Same as >r.

	pop
	(-- a) "Pop return stack to tos. Same as r>,"

	+
	(a b -- c) Add two tos items

	-
	(a b -- c) Subtract tos from 2nd item

	*
	(a b -- c) Multiply two tos items

	/
	(a b -- c) Divide 2nd item by tos

	mod
	(a b -- c) Modulus 2nd item by tos

	and
	(a b -- c) Bitwise AND of two tos items

	or
	(a b -- c) Bitwise OR of two tos items

	xor
	(a b -- c) Bitwise XOR of two tos items

	negate
	(a -- b) Negate tos

	0=
	(a -- f) Return true if a=0

	0<
	(a -- f) Return true if a<0

	0>
	(a -- f) Return true if a>0

	0<>
	(a -- f) Return true if a is not 0

	0<=
	(a -- f) Return true if a<=0

	0>=
	(a -- f) Return true if a>=0

	=
	(a b -- f) Return true if a=b

	>
	(a b -- f) Return true if a>b

	<
	(a b -- f) Return true if a<b

	<>
	(a b -- f) Return true if a is not equal to b

	>=
	(a b -- f) Return true if a>=b

	<=
	(a b -- f) Return true if a<=b

	==
	(a b -- f) Return true if a=b

	base@
	(-- a) Return current base

	base!
	(a --) Make a the current base

	hex
	(--) Change to hexadecimal base

	decimal
	(--) Change to decimal base

	cr
	(--) Display a carriage return

	.
	(a --) Display number a on tos

	.r
	(a n --) Display a in n columns

	emit
	(a --) Display an ASCII character

	space
	(--) Display a space

	spaces
	(n --) Display n spaces

	[
	(--) Change to interpreting mode

]
	(--) Change to compiling mode

	find
	(-- w) Return token of next synonym

	'
	(-- w) Return token of next synonym outside colon synonym.

	(')
	(-- w) Return token of next synonym inside colon synonym.

	[']
	(-- w) Return token of next compiled string while compiling.

	dolit
	(--) Push next token on stack

	dostr
	(-- w) Return token of next string

	"s"""
	(-- w) Compile next synonym as a string literal

	dotstr
	(--) Display next compiled string

	"."""
	(--) Compile next synonym as a string literal for display

	(
	(--) Comment to the next)

	.(
	(--) Display next synonym up to next)

	\
	(--) Comment to the new line

	exit
	(--) Unnest a list

	0branch
	(f --) Branch to the following address if tos is 0

	donext
	(--) Loop to the following address

	if
	(f --) Skip the next true branch if tos is 0

	else
	(--) Take the next false branch

	then
	(--) Terminate an if-else-then branch structure

	begin
	(--) Start a begin loop structure

	again
	(--) Repeat the begin loop

	until
	(f --) Repeat begin loop if tos is 0

	while
	(f --) Skip the following true branch if tos is 0

	repeat
	(--) Repeat begin loop

	for
	(n --) Repeat following loop n+1 times

	next
	(--) Decrement top of return stack. Exit loop if top of return stack is negative negative.

	aft
	(--) Skip loop once for the first time

	:
	(--) Define a new colon word

	;
	(--) Terminate a colon word

	create
	(--) Create a new array

	variable
	(--) Create a new variable with initial value of 0

	constant
	(a --) Create a new constant with value a

	","
	(n --) Compile number n to pf field of newest word

	allot
	(n --) Allocate n item to the current array. Init values are 0.

	does
	(--) Assign following token list to the new word just created

	q@
	(i -- a) Return value of ith item in qf field of current word

	here
	(-- w) Return top of dictionary

	words
	(--) Display names of all words in dictionary

	dump
	(--) Display all word objects in dictionary

	forget
	(--) Trim dictionary back to the following synonym

	boot
	(--) Trim dictionary back to the fence

	see
	(--) Disassemble the following synonym

	date
	(--) Display data-time string

	@
	(w -- a) Return contents of a variable

	!
	(n w --) Store n in variable at w

	+!
	(n w --) Add n to the variable at w

	?
	(w --) Display contents in variable w

	array@
	(w i -- b) Return contents of the ith item in array w

	array!
	(n w i --) Store n into ith item of array w

	is
	(w --) Force next word to execute w. interpret only.

	to
	(n --) Change the value of next constant token to n. compile only.

	ms
	(n --) Delay n milliseconds

	pi
	(-- pi) Return PI

	random
	(-- a) Return a random number betwee 0 and 1

	int
	(a -- n) Change tos to integer

	ceil
	(a -- n) Ceiling tos to integer

	floor
	(a -- n) Floor tos to integer

	sin
	(a -- b) Reture sine of tos

	cos
	(a -- b) Reture cosine of tos

	tan
	(a -- b) Reture tangent of tos

	asin
	(a -- b) Reture arc sine of tos

	acos
	(a -- b) Reture arc cosine of tos

	exp
	(a -- b) Reture exponential of tos

	log
	(a -- b) Reture logarithmic of tos

	sqrt
	(a -- b) Reture square root of tos

	abs
	(a -- b) Reture absolute of tos

	max
	(a b -- c) Return larger of two tos items

	min
	(a b -- c) Return smaller of two tos items

	atan2
	(a b -- c) Return arc tangent of a/b

	pow
	(a b -- c) Return a to the bth power

	image@
	(a -- r g b) "Return the (r,g,b) colors of the image pixel at address a"

	image!
	(r g b a --) "Store the (r,g,b) colors in the image pixel at address a"

	show
	(--) Reveal the image on the canvas

	poly
	(v a b c d e f ms --) Play a 6 voice chord with volume of v for ms milliseconds

	e6
	(-- a) Return note frequency

	d6#
	(-- a) Return note frequency

	e6b
	(-- a) Return note frequency

	d6
	(-- a) Return note frequency

	d6b
	(-- a) Return note frequency

	c6#
	(-- a) Return note frequency

	c6
	(-- a) Return note frequency

	b5
	(-- a) Return note frequency

	a5#
	(-- a) Return note frequency

	b5b
	(-- a) Return note frequency

	a5
	(-- a) Return note frequency

	g5#
	(-- a) Return note frequency

	a5b
	(-- a) Return note frequency

	g5
	(-- a) Return note frequency

	f5#
	(-- a) Return note frequency

	g5b
	(-- a) Return note frequency

	f5
	(-- a) Return note frequency

	e5
	(-- a) Return note frequency

	d5#
	(-- a) Return note frequency

	e5b
	(-- a) Return note frequency

	d5
	(-- a) Return note frequency

	c5#
	(-- a) Return note frequency

	d5b
	(-- a) Return note frequency

	c5
	(-- a) Return note frequency

	b4
	(-- a) Return note frequency

	b4b
	(-- a) Return note frequency

	a4#
	(-- a) Return note frequency

	a4
	(-- a) Return note frequency

	g4#
	(-- a) Return note frequency

	a4b
	(-- a) Return note frequency

	g4
	(-- a) Return note frequency

	f4#
	(-- a) Return note frequency

	g4b
	(-- a) Return note frequency

	f4
	(-- a) Return note frequency

	e4
	(-- a) Return note frequency

	d4#
	(-- a) Return note frequency

	e4b
	(-- a) Return note frequency

	d4
	(-- a) Return note frequency

	c4#
	(-- a) Return note frequency

	d4b
	(-- a) Return note frequency

	c4
	(-- a) Return note frequency

	b3
	(-- a) Return note frequency

	a3#
	(-- a) Return note frequency

	b3b
	(-- a) Return note frequency

	a3
	(-- a) Return note frequency

	g3#
	(-- a) Return note frequency

	a3b
	(-- a) Return note frequency

	g3
	(-- a) Return note frequency

	f3#
	(-- a) Return note frequency

	g3b
	(-- a) Return note frequency

	f3
	(-- a) Return note frequency

	e3
	(-- a) Return note frequency

	d3#
	(-- a) Return note frequency

	e3b
	(-- a) Return note frequency

	d3
	(-- a) Return note frequency

	c3#
	(-- a) Return note frequency

	d3b
	(-- a) Return note frequency

	c3
	(-- a) Return note frequency

	b2
	(-- a) Return note frequency

	a2#
	(-- a) Return note frequency

	b2b
	(-- a) Return note frequency

	a2
	(-- a) Return note frequency

	g2#
	(-- a) Return note frequency

	a2b
	(-- a) Return note frequency

	g2
	(-- a) Return note frequency

	f2#
	(-- a) Return note frequency

	g2b
	(-- a) Return note frequency

	f2
	(-- a) Return note frequency

	e2
	(-- a) Return note frequency

	d2#
	(-- a) Return note frequency

	e2b
	(-- a) Return note frequency

	d2
	(-- a) Return note frequency

	c2#
	(-- a) Return note frequency

	d2b
	(-- a) Return note frequency

	c2
	(-- a) Return note frequency

	b1
	(-- a) Return note frequency

	a1#
	(-- a) Return note frequency

	b1b
	(-- a) Return note frequency

	a1
	(-- a) Return note frequency

	g1#
	(-- a) Return note frequency

	a1b
	(-- a) Return note frequency

	g1
	(-- a) Return note frequency

